進階搜尋


 
系統識別號 U0026-1808201123251700
論文名稱(中文) 應用於生理訊號與電化學感測器之即時遙測系統
論文名稱(英文) Real-Time Telemetry Systems for Physiological Signals and Electrochemical Sensors
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 王偉松
研究生(英文) Wei-Song Wang
學號 n2895145
學位類別 博士
語文別 英文
論文頁數 68頁
口試委員 指導教授-羅錦興
共同指導教授-黃弘一
口試委員-王明鉅
口試委員-王朝欽
口試委員-王進賢
口試委員-周澤川
口試委員-許梅娟
中文關鍵字 遙測系統  恆電位計  儀表放大器  電化學感測器 
英文關鍵字 telemetry  potentiostat  instrumentation amplifier  electrochemical sensor 
學科別分類
中文摘要 由於遙測系統具備在不影響使用者自由活動的情況下,達到長期監測的特性,而被廣泛的應用在各種方面,如疾病診斷。因此本研究即分別針對應用於生理訊號擷取與電化學感測器實現了相對應之即時遙測系統。同時,具有高線性度與高共模拒斥比之讀取電路也被實現來當作感測器與後端電路的介面電路。使用者可以透過所提出之遙測系統方便地執行電化學分析或者監測生理訊號,並且利用所開發之使用者圖形介面,即時顯示所擷取到的資料與透過網路將資料上傳到資料庫,而遠端使用者則可以輕易的透過網路從資料庫獲得所擷取到的資料。此外,由於小尺寸之特性,使所提出之系統適合於可攜式之應用。
在生醫訊號應用方面,本研究提出了一個具有類比前端晶片之生醫訊號擷取系統。由於類比前端電路決定了所擷取之生醫訊號品質,因此本研究使用台積電0.18微米互補式金氧半電晶體製程製作了一具備低功耗與高共模拒斥比之類比前端晶片,其實驗結果顯示此實現之晶片具備90分貝之共模拒斥比與21.6微瓦之功率損耗,其晶片核心面積為0.1平方毫米。此外,本系統亦量測了心電圖、腦電圖與肌電圖來證實系統的功能性,而整體系統之面積為6公分 × 2.5公分,重量為30公克,所消耗之功率為66 毫瓦。
在應用於電壓式與電流式電化學感測器方面,本研究提出了一個即時遙測系統,透過結合電化學感測器,可以方便且快速地進行分析物之檢測。此外,本研究使用可编程邏輯閘陣列開發微控制器來實現消除系統雜訊、傳輸訊號與系統功耗控管之功能,進而達到節省功耗之目的。在讀取電路部分,則使用台積電0.18微米互補式金氧半電晶體製程實現,其包含了恆電位計與儀表放大器,由實驗結果可知,所製作之恆電位計具有1奈安培到100微安培的寬可檢測電流範圍,而儀表放大器則具有高於90分貝之共模拒斥比。此外,此系統亦結合了電壓式酸鹼值感測器與電流式亞硝酸感測器進行異質整合量測,在此電化學實驗,此系統皆達到了大於0.99之高線性度。最後,此系統具備了5.6公分 × 8.7公分之小尺寸、可攜式與高度整合之特點。
英文摘要 Telemetry is widely utilized for disease diagnosis because it offers both freedom of mobility and long-term monitoring. In this study, real-time telemetry systems are presented for physiological signal acquisition and electrochemical sensor applications, respectively. Readout chips, which include a potentiostat and an instrumentation amplifier (IA), are implemented as the interface between the sensor and the back-end circuit. The proposed systems allow users to conveniently perform electrochemical detection or monitor biopotential signals. The acquired data is displayed in real-time on the developed user-friendly graphical user interface (GUI) and optionally uploaded to a database via the internet, allowing it to be accessed remotely. The compact size of the proposed systems makes them suitable for portable applications.
A biopotential acquisition system with an analog front-end (AFE) chip is proposed. The AFE circuit defines the quality of the acquired biosignals. Thus, an AFE chip with low power consumption and a high common-mode rejection ratio (CMRR) is implemented in the TSMC 0.18-µm CMOS process. The measurement results show that the proposed AFE, with a core area of 0.1 mm^2, has a CMRR of 90 dB and power consumption of 21.6 µW. Electroencephalogram (EEG), electrocardiogram (ECG) and electromyogram (EMG) biopotential signals are measured to verify the proposed system. The board size of the proposed acquisition system is 6 cm × 2.5 cm and its weight is 30 g. The total power consumption of the proposed acquisition system is 66 mW.
For amperometric and potentiometric electrochemical sensor applications, a real-time telemetry system is proposed. By integrating the proposed system with electrochemical sensors, the detection of analytes can be conveniently performed. A microcontroller unit (MCU) is implemented using a field programmable gate array (FPGA) to filter noise, transmit data, and provide control over peripheral devices to reduce system power consumption. The readout circuits, which are implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an IA. The measurement results show that the proposed potentiostat has a wide detectable current range of 1 nA to 100 μA. The proposed IA has a CMRR of above 90 dB. The proposed system is heterogeneously integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has a high linearity (an R^2 value of above 0.99 is obtained in each electrochemical experiment), a small size of 5.6 cm × 8.7 cm, high portability, and high integration.
論文目次 摘 要 I
Abstract III
誌 謝 V
Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 5
Chapter 2 Review of Potentiostat and Instrumentation Amplifier Topologies 6
2.1 Topologies of an IA 6
2.2 Topologies of a Potentiostat 11
Chapter 3 Wireless Biopotential Acquisition System for Portable Healthcare Monitoring 18
3.1 Topologies of an AFE Circuit 18
3.2 Proposed Wireless Biopotential Acquisition System 19
3.2.1 Analog Front-End Circuit 19
3.2.1.1 Simplified Differential Difference Amplifier 20
3.2.1.2 Second-Order Low-Pass Filter 23
3.2.1.3 Gain Stage 23
3.2.2 Peripheral Devices 24
3.3 Measurement Results 27
3.3.1 Analog Front-End Circuit 27
3.3.2 Proposed Acquisition System 30
Chapter 4 Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors 35
4.1 System Architecture 35
4.1.1 Readout Circuits 36
4.1.1.1 Instrumentation Amplifier 36
4.1.1.2 Potentiostat 39
4.1.2 Microcontroller Unit 42
4.1.2.1 MUX/ADC Control 42
4.1.2.2 Digital Filter 43
4.1.2.3 UART Interface Communication 44
4.1.2.4 Mode Control 45
4.1.2.5 Control Unit 46
4.1.3 RF Transceiver and GUI 47
4.2 Measurement Results 48
4.2.1 Readout Circuits 48
4.2.2 Proposed Telemetry System 54
Chapter 5 Conclusion and Future Work 59
5.1 Conclusion 59
5.2 Future Work 60
References 62
Publication List 67
Biography 68
參考文獻 [1] D. S. Schregardus, A. W. Pieneman, A. Ter Maat, R. F. Jansen, T. J. F. Brouwer, and M. L. Gahr, “A lightweight telemetry system for recording neuronal activity in freely behaving small animals,” Journal of Neuroscience Methods, vol. 155, pp. 62-71, Jul. 2006.
[2] X. Ye, P. Wang, J. Liu, S. Zhang, J. Jiang, Q. Wang, W. Chen, and X. Zheng, “A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals,” Journal of Neuroscience Methods, vol. 174, pp. 186-193, Sep. 2008.
[3] J. Black, M. Wilkins, P. Atanasov, and E. Wilkins, “Integrated sensor-telemetry system for in vivo glucose monitoring,” Sensors and Actuators B: Chemical, vol. 31, pp. 147-153, Mar. 1996.
[4] A. V. M. Franco, “Recurrent urinary tract infections,” Best Practice & Research Clinical Obstetrics & Gynaecology, vol. 19, pp. 861-873, Dec. 2005.
[5] E. J. Dielubanza and A. J. Schaeffer, “Urinary tract infections in women,” Medical Clinics of North America, vol. 95, pp. 27-41, Jan. 2011.
[6] F. Cruz, M. Dambros, K. G. Naber, H. W. Bauer, and G. Cozma, “Recurrent urinary tract infections: Uro-Vaxom®, a new alternative,” European Urology Supplements, vol. 8, pp. 762-768, Sep. 2009.
[7] C.-Y. Lin, Y.-H. Lai, A. Balamurugan, R. Vittal, C.-W. Lin, and K.-C. Ho, “Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide,” Talanta, vol. 82, pp. 340-347, Jun. 2010.
[8] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. New York: Wiley, Dec. 2000.
[9] P. Estrela, D. Paul, P. Li, S. D. Keighley, P. Migliorato, S. Laurenson, and P. K. Ferrigno, “Label-free detection of protein interactions with peptide aptamers by open circuit potential measurement,” Electrochimica Acta, vol. 53, pp. 6489-6496, Sep. 2008.
[10] C.-Y. Huang, M.-J. Syu, Y.-S. Chang, C.-H. Chang, T.-C. Chou, and B.-D. Liu, “A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting,” Biosensors and Bioelectronics, vol. 22, pp. 1694-1699, Mar. 2007.
[11] W.-Y. Liao, Y.-G. Lee, C.-Y. Huang, H.-Y. Lin, Y.-C. Weng, and T.-C. Chou, “Telemetric electrochemical sensor,” Biosensors and Bioelectronics, vol. 20, pp. 482-490, Oct. 2004.
[12] S. Ayers, K. D. Gillis, M. Lindau, and B. A. Minch, “Design of a CMOS potentiostat circuit for electrochemical detector arrays,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, pp. 736-744, Apr. 2007.
[13] H. Sungkil and S. Sonkusale, “CMOS VLSI potentiostat for portable environmental sensing applications,” IEEE Sensors Journal, vol. 10, pp. 820-821, Apr. 2010.
[14] R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60 μW 60 nV/root Hz readout front-end for portable biopotential acquisition systems,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1100-1110, May 2007.
[15] T. Denison, K. Consoer, W. Santa, A. T. Avestruz, J. Cooley, and A. Kelly, “A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 2934-2945, Dec. 2007.
[16] R. F. Yazicioglu, P. Merken, and C. Van Hoof, “Integrated low-power 24-channel EEG front-end,” Electronics Letters, vol. 41, pp. 457-458, Apr. 2005.
[17] S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd ed. New York: MacGraw-Hill, Aug. 2002.
[18] E. M. Spinelli, R. Pallas-Areny, and M. A. Mayosky, “AC-coupled front-end for biopotential measurements,” IEEE Transactions on Biomedical Engineering, vol. 50, pp. 391-395, Mar. 2003.
[19] R. Martins, S. Selberherr, and F. A. Vaz, “A CMOS IC for portable EEG acquisition systems,” IEEE Transactions on Instrumentation and Measurement, vol. 47, pp. 1191-1196, Oct. 1998.
[20] H. Krabbe, “A high-performance monolithic instrumentation amplifier,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Philadelphia, Feb. 1971, vol. 14, pp. 186-187.
[21] F. Eatock, “A monolithic instrumentation amplifier with low input current,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Philadelphia, Feb. 1973, vol. 16, pp. 148-149.
[22] A. P. Brokaw and M. P. Timko, “An improved monolithic instrumentation amplifier,” IEEE Journal of Solid-State Circuits, vol. 10, pp. 417-423, Dec. 1975.
[23] M. S. J. Steyaert and W. M. C. Sansen, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE Journal of Solid-State Circuits, vol. 22, pp. 1163-1168, Dec. 1987.
[24] R. F. Yazicioglu, P. Merken, and C. Van Hoof, “Effect of electrode offset on the CMRR of the current balancing instrumentation amplifiers,” in PhD Research in Microelectronics and Electronics, Jul. 2005, vol. 1, pp. 35-38.
[25] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 958-965, Jun. 2003.
[26] E. Sackinger and W. Guggenbuhl, “A versatile building block: the CMOS differential difference amplifier,” IEEE Journal of Solid-State Circuits, vol. 22, pp. 287-294, Apr. 1987.
[27] K. A. Ng and P. K. Chan, “A CMOS analog front-end IC for portable EEG/ECG monitoring applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, pp. 2335-2347, Nov. 2005.
[28] J. G. Webster, Medical Instrumentation: Application and Design, 4th ed. New York: Wiley, Feb. 2009.
[29] M. Lambrechts and W. Sansen, Biosensors: Microelectrochemical Devices. Bristol: Institute of Physics Publishing, Jan. 1992.
[30] J. C. Fidler, W. R. Penrose, and J. P. Bobis, “A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors,” IEEE Transactions on Instrumentation and Measurement, vol. 41, pp. 308-310, Apr. 1992.
[31] W.-Y. Chung, A. C. Paglinawan, Y.-H. Wang, and T.-T. Kuo, “A 600 μW readout circuit with potentiostat for amperometric chemical sensors and glucose meter applications,” in IEEE Conference on Electron Devices and Solid-State Circuits, Dec. 2007, pp. 1087-1090.
[32] L. Busoni, M. Carla, and L. Lanzi, “A comparison between potentiostatic circuits with grounded work or auxiliary electrode,” Review of Scientific Instruments, vol. 73, pp. 1921-1923, Apr. 2002.
[33] Z. Jichun, N. Trombly, and A. Mason, “A low noise readout circuit for integrated electrochemical biosensor arrays,” in Proceedings of IEEE Sensors, Oct. 2004, vol. 1, pp. 36-39.
[34] R. F. B. Turner, D. J. Harrison, and H. P. Baltes, “A CMOS potentiostat for amperometric chemical sensors,” IEEE Journal of Solid-State Circuits, vol. 22, pp. 473-478, Jun. 1987.
[35] R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, and N. V. Thakor, “16-channel integrated potentiostat for distributed neurochemical sensing,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 2371-2376, Nov. 2006.
[36] S. M. R. Hasan, “Stability analysis and novel compensation of a CMOS current-feedback potentiostat circuit for electrochemical sensors,” IEEE Sensors Journal, vol. 7, pp. 814-824, May 2007.
[37] M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, and N. V. Thakor, “VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 63-72, Mar. 2007.
[38] M. H. Nazari and R. Genov, “A fully differential CMOS potentiostat,” in IEEE International Symposium on Circuits and Systems, May 2009, pp. 2177-2180.
[39] R. J. Reay, S. P. Kounaves, and G. T. A. Kovacs, “An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation,” in IEEE International Solid-State Circuits Conference, Feb. 1994, pp. 162-163.
[40] M. M. Ahmadi and G. A. Jullien, “A very low power CMOS potentiostat for bioimplantable applications,” in the 5th International Workshop on System-on-Chip for Real-Time Applications, Jul. 2005, pp. 184-189.
[41] M. M. Ahmadi and G. A. Jullien, “Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, pp. 1339-1348, Jul. 2009.
[42] W.-T. Kuo, “CMOS potentiostat for amperometric chemical sensors,” Master thesis, Department of Electrical Engineering, National Cheng Kung University, Jul. 2009.
[43] R. Greef, “Instruments for use in electrode process research,” Journal of Physics E-Scientific Instruments, vol. 11, pp. 1-12, Jan. 1978.
[44] K. Iniewski, Ed., VLSI Circuits for Biomedical Applications, 1st ed. Boston: Artech House, Jul. 2008.
[45] S. Farshchi, A. Pesterev, P. H. Nuyujukian, I. Mody, and J. W. Judy, “Bi-Fi: An embedded sensor/system architecture for remote biological monitoring,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, pp. 611-618, Nov. 2007.
[46] L. Majer, V. Stopjakova, and E. Vavrinsky, “Wireless measurement system for non-invasive biomedical monitoring of psycho-physiological processes,” Journal of Electrical Engineering-Elektrotechnicky Casopis, vol. 60, pp. 57-68, Mar.-Apr. 2009.
[47] Z.-C. Wu, “A low-power AFE amplifier for portable biomedical signal sensing application,” Master thesis, Department of Electrical Engineering, National Cheng Kung University, Jul. 2009.
[48] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE, vol. 84, pp. 1584-1614, Nov. 1996.
[49] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New York: McGraw-Hill, Aug. 2000.
[50] A. Nait-Ali, Advanced Biosignal Processing. Berlin: Springer, Apr. 2009.
[51] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, “A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE Journal of Solid-State Circuits, vol. 29, pp. 1505-1513, Dec. 1994.
[52] Y. Kai-Wen, L. Wei-Chih, C. S. A. Gong, L. Yu-Ying, and S. Muh-Tian, “A differential difference amplifier for neural recording system with tunable low-frequency cutoff,” in IEEE International Conference on Electron Devices and Solid-State Circuits, Dec. 2008, pp. 1-4.
[53] R. Hogervorst, J. P. Tero, and J. H. Huijising, “Compact CMOS constant-gm rail-to-rail input stage with gm-control by an electronic zener diode,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1035-1040, Jul. 1996.
[54] S.-C. Chen, “Wireless multi-channel electrochemical signal sensing system,” Master thesis, Department of Electrical Engineering, National Cheng Kung University, Jul. 2010.
[55] S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, 2nd ed. San Diego: California Technical Publishing, Jun. 1999.
[56] S. M. Martin, F. H. Gebara, T. D. Strong, and R. B. Brown, “A fully differential potentiostat,” IEEE Sensors Journal, vol. 9, pp. 135-142, Feb. 2009.
[57] C.-Y. Lin, V. S. Vasantha, and K.-C. Ho, “Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs,” Sensors and Actuators B: Chemical, vol. 140, pp. 51-57, Jun. 2009.
[58] W.-Y. Liao and T.-C. Chou, “Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor,” Analytical Chemistry, vol. 78, pp. 4219-4223, Jun. 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw