進階搜尋


下載電子全文  
系統識別號 U0026-1808201001385300
論文名稱(中文) 金奈米粒子之綠色合成及其磁性複合奈米粒子之製備
論文名稱(英文) Green synthesis of gold nanoparticles and fabrication of their magnetic composite nanoparticles
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 吳建成
研究生(英文) Chien-Chen Wu
學號 n3892114
學位類別 博士
語文別 中文
論文頁數 130頁
口試委員 指導教授-陳東煌
召集委員-楊毓民
口試委員-江禎立
口試委員-李建良
口試委員-鄧熙聖
中文關鍵字 金奈米粒子  綠色合成  磁性複合奈米粒子  奈米觸媒 
英文關鍵字 Gold nanoparticle  Green synthesis  Magnetic composite nanoparticle  Nanocatalyst 
學科別分類
中文摘要 本論文係有關金奈米粒子之綠色合成與其磁性複合奈米粒子之製備。在金奈米粒子合成的部分,本研究分別使用食物添加劑以及阿拉伯膠來取代有害的化學物質。首先,在未添加任何保護劑與還原劑的情況下,將溶有四氯金酸離子的料理米酒溶液中添加入小蘇打粉適度加熱反應後,即可得到遵循綠色製程的金奈米粒子,料理米酒在系統中扮演溶劑以及還原劑的角色,而小蘇打粉則具有保護劑以及催化劑的身份。金奈米的形成可藉由紫外光/可見光光譜儀、穿透式電子顯微鏡與X射線繞射光譜儀分析之,研究中發現當pH值為6.5且反應溫度為25~55°C時,所得到的金奈米粒子溶液相當穩定,即使經過數個月後依然未有沉澱產生,而因為料理米酒與小蘇打粉經常被用作食物添加劑且取得容易,使金奈米粒子的製作顯得容易且方便。
以阿拉伯膠來製備金奈米粒子同樣也提供了一種綠色的途徑來製造金奈米粒子,研究中以阿拉伯膠作為還原劑及穩定劑,無需添加額外的試劑,在反應溫度25~70°C間合成出金奈米粒子,在UV/VIS吸收光譜、電子顯微鏡、高解析電子顯微鏡、選擇性區域式電子繞射以及X射線繞射光譜的輔助之下,可證明確實反應生成金奈米粒子,且為面心立方的結構。研究中發現,提升反應溫度時對金奈米粒子的生成速率影響較小,而當四氯金酸與阿拉伯膠濃度增加時,金奈米粒子的粒徑會變大,其粒徑分佈也會變的較寬廣。此外,所得到的金奈米溶液亦相當穩定,即使在高濃度的NaCl溶液中亦不會有沉澱的現象。
磁性複合奈米粒子的製備部份,是根據阿拉伯膠能夠成功製備出金奈米粒子的概念,在被覆了阿拉伯膠分子的磁性奈米粒子上,直接合成金奈米粒子層,藉由分析可觀察到磁性奈米粒子上有厚度2 nm的金奈米粒子層。將具有磁力可回收的金奈米觸媒進行4-硝基酚的觸媒催化反應,可得知反應是遵循擬一階反應動力方程式,且其反應速率會隨著金奈米觸媒的增加或4-硝基酚濃度的減少而上升,結果並發現觸媒反應不需要誘導期即能馬上產生反應。另外,觸媒在重複回收再利用後依然能保持良好的活性,顯示其優良的穩定性與觸媒活性。
英文摘要 The dissertation concerns the “green synthesis” of gold nanoparticles and fabrication of their magnetic composite nanoparticles. For the synthesis of gold nanoparticles, food additives and gum arabic were used instead of toxic chemicals. First of all, a facile and completely green route to synthesize Au nanoparticles by mixing the Au(III) ions-dissolved rice wine and soda at a slightly elevated temperature in the absence of extra protective agents was developed. Rice wine was used as a solvent and a reducing agent. Also, soda not only functioned as a protective agent but also played a role of base catalyst. No extra protective agents are needed. From the analyses of UV/VIS absorption spectra, TEM, and XRD patterns, the formation of Au nanoparticles was recognized. The appropriate pH and temperature were around 6.5 and 25-55C, respectively. The resultant solution was quite stable. No precipitation occurred even after several months. Rice wine and soda are often used as the additives of drinks or foods, and are easily obtained in our daily life. So, it becomes possible that people can easily make the Au nanoparticles at home by the route proposed in this work.
The completely green route to synthesize gold nanoparticles was also performed by gum arabic. The synthesis of Au nanoparticles at 25-70C has been developed by using only hydrogen tetrachloroaurate as the precursor and gum arabic (GA) simultaneously as a reducing agent and a stabilizing agent. No extra reagents are needed. From the analyses of UV/VIS absorption spectra, TEM, HRTEM, SAED, and XRD patterns, the formation of Au nanoparticles with a fcc structure was recognized. The synthesis reaction was usually finished in 2-4 h. Increasing the reaction temperature increased the formation rate but had no significant effect on the optical property and size of Au nanoparticles. With increasing Au(III) ion concentration or GA concentration, the mean diameter of Au nanoparticles slightly increased. Also, the particle size distribution became broader at higher Au(III) ion concentration or lower GA concentration due to the insufficient protection. Although raising the GA concentration was helpful to reduce Au(III) ions completely and stabilize the Au nanoparticles, too high GA concentration was not suitable for the stabilization of Au nanoparticles because the increased intermolecular force of GA might hinder the dispersion of Au nanoparticles. Furthermore, the resultant Au nanoparticles were found to remain highly stable in the NaCl solution.
Fabrication of magnetic composite nanoparticles was derived from the successfully synthesis of Au nanoparticles with gum arabic. Au layer with a thickness of 2nm was observed on the surface of magnetic nanoparticle. The resultant magnetically recoverable Au nanocatalyst exhibited excellent catalytic activity to the reduction of 4-nitrophenol (4-NP) with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increasing the amount of Au nanocatalyst and decreasing the initial 4-NP concentration. Also, the catalytic reaction started instantaneously without induction period. In addition, the activity of catalyst remained unaltered during the catalytic and separation processes, suggesting the stable nature and good catalytic ability of this nanocatalyst.
論文目次 中文摘要……………………………………………...…………….. I
英文摘要……………………………………………...…………….. III
誌謝…………………………………………………………………. V
總目錄………………………………………………………………. VI
表目錄………………………………………………...…………….. VIII
圖目錄………………………………………………...…………….. IX


第一章 緒論
1.1 奈米材料與奈米技術………..………………………………… 1
1.1.1前言………………….……………………………………... 1
1.1.2奈米材料的定義…………….……………………………... 4
1.1.3奈米材料的製備............………….………………………... 4
1.1.4奈米材料的特性與應用………….………………………... 6
1.2 金奈米材料………………...……………......……………….… 10
1.2.1金奈米材料之簡介……………..………………………….. 10
1.2.2金奈米材料之製備....……………………………………… 10
1.2.3金奈米材料之特性與應用…………..…………….…….… 15
1.3磁性奈米材料…………………………...……………….……... 20
1.3.1磁性奈米材料之簡介………………………..…………….. 20
1.3.2磁性奈米材料之製備與應用……………………..….…… 20
1.4奈米複合材料…………………………….……………...……... 24
1.5奈米材料之綠色合成…………………….……………...……... 29
1.5.1前言...................……………..……………………………... 29
1.5.2以綠色化學來製備奈米材料……………………………… 30
1.6研究動機與內容………………………….……………...……... 32

第二章 33
2.1藥品……………………………………………...…...…………. 33
2.2儀器………………………………………………………...…… 34
2.3材料………………………………………………………...…… 35
2.4金奈米粒子之綠色合成………………….……………...……... 36
2.4.1以食物添加劑製備之金奈米粒子……………..…..……… 36
2.4.2以阿拉伯膠製備之金奈米粒子………………..…..……… 37
2.5磁性複合金奈米粒子之製備及其作為觸媒之應用…...…….... 38
2.5.1磁性奈米粒子之製備…………………………..…..……… 38
2.5.2阿拉伯膠被覆磁性奈米粒子之製備…………..…..……… 38
2.5.3磁性複合金奈米粒子之製備…………………..…..……… 38
2.5.4磁性複合金奈米粒子作為觸媒之應用………..…..……… 39
2.6特性分析…………………………………………………...…… 40

第三章 結果與討論 42
3.1金奈米粒子之綠色合成…………..……………..………….….. 42
3.1.1以食物添加劑製備之金奈米粒子……………..…..……… 42
3.1.2以阿拉伯膠製備之金奈米粒子………………..…..……… 64
3.2磁性複合金奈米粒子之製備及其作為觸媒之應用...……........ 87
3.2.1磁性複合金奈米粒子之特性分析……………..…..……… 87
3.2.2磁性複合金奈米粒子作為觸媒之應用...……..…..………. 96
第四章 總結論 106
參考文獻……………………………………………………...…….. 108
自述與論文著作………………………………..……………….….. 129
參考文獻 1. Feynman, R. (1960) There's Plenty of Room at the Bottom. Eng. Sci. 23, 22.
2. Edwards, S. (2006) Who invented nano? Nat. Nanotechnol. 1, 87.
3. Binnig, G.; Rohrer, H. Scanning tunneling microscopy: from birth to adolescence. (1987) Rev. Mod. Phys. 59, 615.
4. Eigler, D. M.; Schweizer, E. K. (1990) Positioning Single Atoms With a Scanning Tunneling Microscope. Nature 344, 524.
5. Toumey, C. (2007) The man who understood the Feynman machine. Nat. Nanotechnol. 2, 9.
6. Gerber, C.; Lang, H. P. (2006) How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3.
7. Porter, A. L.; Youtie, J. (2009) Where does nanotechnology belong in the map of science? Nat. Nanotechnol. 4, 534.
8. Helmus, M. (2006) How to commercialize nanotechnology? Nat. Nanotechnol. 1, 157.
9. Ying, J. (2006) nan'o.tech.nol'o.gy n. Nat. Nanotechnol. 1, 8.
10. Wang, Y.; Wei, Y. in: Nalwa H. S. (Ed.) (2004) Encyclopedia of Nanoscience and Nanotechnology, California: American Scientific Publishers vol. 5, p. 337.
11. Martin, J. E.; Odinek, J.; Wilcoxon, J. P.; Anderson, R. A.; Provencio. P. (2003) Sintering of Alkanethiol-Capped Gold and Platinum Nanoclusters. J. Phys. Chem. B , 107, 430.
12. Toshima, N.; Yonezawab, T. (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 1179.
13. Drexler, K. E. (1981) Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. 78, 5275.
14. 吳思翰 (2004) 金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學工程研究所博士論文。
15. Graffet, E.; Tchikart, M.; Elkedim, O.; Rahouadj, R. (1996) Nanostructural materials formation by mechanical alloying morphologic analysis based on transmission and scanning electron-microscopic observations. Mater. Charact. 36, 185.
16. Blackborrow, J. R.; Young, D. (1979) Metal vapor synthesis in organometallic chemistry. Berlin: Springer-Verlag Chemie.
17. 張志焜;崔作林 (2000) 納米技術與納米材料,北京:國防工業。
18. 工研院工業材料研究所 (2001) 2001材料奈米技術專刊,臺北:經濟部技術處。
19. 吳明立 (2001) 微乳化系統製備雙金屬奈米粒子之研究,國立成功 大學化學工程研究所博士論文。
20. 陳郁文 (1998) 納米材料在觸媒上的應用,化工,5,21。
21. Schmid, G.. (2001) Metals. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, pp.15-59.
22. 莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
23. 廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國立
成功大學化學工程研究所博士論文。
24. 蘇品書 譯 (1989) 超微粒子材料技術,台南: 復漢。
25. 張揚狀 (2005) 表面被覆幾丁聚醣之多功能磁性奈米載體的製備與應用,國立成功大學化學工程研究所博士論文。
26. Daniel, M.-C.; Astruc, D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 104, 293.
27. Kneipp, K.; Kneipp, H.; Kneipp, J. (2006) Surface-Enhanced Raman Scattering in Local Optical Fields of Silver and Gold Nanoaggregates From Single-Molecule Raman Spectroscopy to Ultrasensitive Probing in Live Cells. Acc. Chem. Res. 39, 443.
28. Castãneda, M. T.; Merkoçi, A.; Pumera, M.; Alegret, S. (2007) Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosensors and Bioelectronics 22, 1961.
29. Ishida, T.; Haruta, M. (2007) Gold Catalysts: Towards Sustainable Chemistry. Angew. Chem. Int. Ed. 46, 7154.
30. Haruta, M. (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech. 6, 102.
31. Zayats, M.; Kharitonov, A. B.; Pogorelova, S. P.; Lioubashevski, O.; Katz, E.; Willner, I. (2003) Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 125, 16006.
32. Jahn, W. (1999) Chemical aspects of the use of gold clusters in structural biology. J. Struct. Biol. 127, 106.
33. Maier, S. A.; Brongersma,M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. (2001) Plasmonics - A Route to Nanoscale Optical Devices. Adv. Mater. 13, 1501.
34. Handley, D. A.; Hayat, M. A. Ed. (1989) Colloidal Gold: Principles, Methods, and Applications. San Diago: Academic Press Vol. 1, Chapter 2.
35. Mangeney, C.; Ferrage, F.; Aujard, I.; Marchi-Artzner, V.; Lullien, L.; Ouari, O.; Rékaї, E. D.; Laschewsky, A.; Vikholm, I.; Sadowski, J. W. (2002) Synthesis and Properties of Water-soluble Gold Colloids Covalently Derivatized with Neutral Polymer Monolayers. J. Am. Chem. Soc. 124, 5811.
36. Schulz-Dobrick, M.; Sarathy, K. V.; Jansen, M. (2005) Surfactant-Free Synthesis and Functionalization of Gold Nanoparticles. J. Am. Chem. Soc. 127, 12816.
37. Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V. P. (2004) Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 14, 1795.
38. Liu, J.; Qin, G.; Raveendran, P.; Ikushima, Y. (2006) Facile "green" synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals. Chem. Eur. J. 12, 2131.
39. Staii, C.; Wood, D. W.; Scoles, G. (2008) Verification of Biochemical Activity for Proteins Nanografted on Gold Surfaces. J. Am. Chem. Soc. 130, 640.
40. Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. (2008) Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896.
41. Qiu, H.; Xue, L.; Ji, G.; Zhou, G.; Huang, X.; Qu, Y.; Gao, P. (2009) Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosensors and Bioelectronics 24, 3014.
42. Bharathi, S.; Nogami, M. (2001) A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst 126, 1919.
43. Aslan, K.; Luhrs, C. C.; Pérez-Luna, V. H. (2004) Controlled and Reversible Aggregation of Biotinylated Gold Nanoparticles with Streptavidin. J. Phys. Chem. B 108, 15631.
44. Celej, M. S.; Rivas, G. (1998) Amperometric Glucose Biosensor Based on Gold-Dispersed Carbon Paste. Electroanalysis 10, 771.
45. Faraday, M. (1857) Experimental relations of gold (and other metals) to light. Philos. Trans. 147, 145.
46. Schmid, G. Large Clusters and Colloids. (1992) Chem. Rev. 92, 1709.
47. Schmid, G.; Chi, L. F. Metal Clusters and Colloids. (1998) Adv. Mater. 10, 515.
48. Schmid, G. (2001) In Nanoscale Materials in Chemistry; Klabunde, K. J., Ed.; New York: Wiley.
49. Bethell, D.; Brust, M.; Schiffrin, D. J.; Kiely, C. (1996) From Monolayers to Nanostructured Materials: An Organic Chemist’s View of Self-Assembly. J. Electroanal. Chem. 409, 137.
50. Brust, M.; Kiely, C. J. (2002) Some Recent Advances in Nanostructure Preparation from Gold and Silver: A Short Topical Review. Colloids Surf. A: Physicochem. Eng. Asp. 202, 175.
51. Brust, M.; Walker, M.; Bethell, D.; Schiffrin. D. J.; Whyman, R. (1994) Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 801.
52. Turkevitch, J.; Stevenson, P. C.; Hillier, J. (1951) Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 11, 55.
53. Enustuna, B. V.; Turkevitch, J. (1963) Coagulation of Colloidal Gold. J. Am. Chem. Soc. 85, 3317.
54. Frens, G. (1973) Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature: Phys. Sci. 241, 20.
55. Belloni, J. (1996) Metal Nanocolloids. Curr. Opin. Colloid Interface Sci. 1, 184.
56. Manna, A.; Imae, T.; Yogo, T.; Aoi, K.; Okazaki, M. (2002) Synthesis of Gold Nanoparticles in a Winsor II Type Microemulsion and Their Characterization. J. Colloid Interface Sci. 256, 297.
57. Aliotta, F.; Arcoleo, V.; Buccoleri, S.; La Manna, G.; Liveri, V. T. (1995) Calorimetric Investigation on the Formation of Gold Nanoparticles in Water/AOT/n-heptane Microemulsions. Thermochim. Acta 265, 15.
58. Chiang, C.-L. (2000) Controlled Growth of Gold Nanoparticles in Aerosol-OT/Sorbitan Monooleate/Isooctane Mixed Reverse Micelles. J. Colloid Interface Sci. 230, 60.
59. Jana, N. R.; Gearheart, L.; Murphy, C. J. (2001) Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater. 13, 2313.
60. Sau, T. K.; Pal, A.; Jana, N. R.; Wang, Z. L.; Pal, T. (2001) Size Controlled Synthesis of Gold Nanoparticles Using Photochemically Prepared Seed Particles. J. Nanopart. Res. 3, 257.
61. Meltzer, S.; Resch, R.; Koel, B. E.; Thompson, M. E.; Madhukar, A.; Requicha, A. A. G.; Will, P. (2001) Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates. Langmuir 17, 1713.
62. Mallick, K.; Wang, Z. L.; Pal, T. (2001) Seed-Mediated Successive Growth of Gold Particles Accomplished by UV Irradiation: a Photochemical Approach for Size-Controlled Synthesis. J. Photochem. Photobiol. 140, 75.
63. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y. (1999) A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chem. Mater. 11, 2310.
64. Khomutov, G. B. (2002) Two-Dimensional Synthesis of Anisotropic Nanoparticles. Colloids Surf. 243.
65. Nakamoto, M.; Yamamoto, M.; Fukusumi, M. (2002) Thermolysis of Gold (I) Thiolate Complexes Producing Novel Gold Nanoparticles Passivated by Alkyl Groups. Chem. Commun. 1622.
66. Chen, W.; Cai, W. P.; Liang, C. H.; Zhang, L. D. (2001) Synthesis of Gold Nanoparticles Dispersed Within Pores of Mesoporous Silica Induced by Ultrasonic Irradiation and its Characterization. Mater. Res. Bull. 36, 335.
67. Chen, W.; Cai, W.; Zhang, L.; Wang, G.; Zhang, L. (2001) Sonochemical Processes and Formation of Gold Nanoparticles within Pores of Mesoporous Silica. J. Colloid Surf. Sci. 238, 291.
68. Pol, V. G.; Gedanken, A.; Calderro-Moreno, J. (2003) Deposition of Gold Nanoparticles on Silica Spheres: A Sonochemical Approach. Chem. Mater. 15, 1111.
69. Garcia-Martinez, J. C.; Crooks, R. M. (2004) Extraction of Au Nanoparticles Having Narrow Size Distributions from within Dendrimer Templates. J. Am. Chem. Soc. 126, 16170.
70. Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M. (2005) Hydrophobic Dendrimers as Templates for Au Nanoparticles. Langmuir 21, 11981.
71. Ghosh, S. K.; Pal, T. (2007) Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 107, 4797.
72. Liz-Marzán, L. M. (2006) Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir 22, 32.
73. Lee, K. S.; El-Sayed, M. A. (2005) Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index. J. Phys. Chem. B 109, 20331.
74. Hulteen, J. C.; Patrissi, C. J.; Miner, D. L.; Crosthwait, E. R.; Oberhauser, E. B.; Martin, C. R. (1997) Changes in the Shape and Optical Properties of Gold Nanoparticles Contained within Alumina Membranes due to Low Temperature Annealing. J. Phys. Chem. B 101, 7727.
75. Santos, Jr., D. S.; Goulet, P. J. G.; Pieczonka, N. P. W.; Oliveira, Jr., O. N.; Aroca, R. F. (2004) Gold Nanoparticle Embedded, Self-Sustained Chitosan Films as Substrates for Surface-Enhanced Raman Scattering. Langmuir 20, 10273.
76. Duan, G.; Cai, W.; Luo, Y.; Li, Z.; Li, Y. (2006) Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect. Appl. Phys. Lett. 89, 211905.
77. Wang, Y.; Chen, H.; Wang, E. (2008) Facile fabrication of gold nanoparticle arrays for efficient surface-enhanced Raman scattering. Nanotechnology 19, 105604.
78. Khoury, C. G.; Vo-Dinh, T. (2008) Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J. Phys. Chem. C 112, 18849.
79. Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Feldmann, J. (2009) Single gold nanostars enhance Raman scattering. Appl. Phys. Lett. 94, 153113.
80. Lopez, N.; Nørskov, J. K. (2002) Catalytic CO Oxidation by a Gold Nanoparticle: A Density Functional Study. J. Am. Chem. Soc. 124, 11262.
81. Chiang, C.-W.; Wang, A.; Wan, B.-Z.; Mou, C.-Y. (2005) High Catalytic Activity for CO Oxidation of Gold Nanoparticles Confined in Acidic Support Al-SBA-15 at Low Temperatures. J. Phys. Chem. B 109, 18042.
82. Ivanova, S.; Petit, C.; Pitchon, V. (2006) Application of Heterogeneous Gold Catalysis with Increased Durability: Oxidation of CO and Hydrocarbons at Low Temperature. Gold Bull. 39, 3.
83. Stephen, A.; Hashmi, K. (2007) Gold-Catalyzed Organic Reactions. Chem. Rev. 107, 3180.
84. Stephen, A.; Hashmi, K.; Hutchings, G. J. (2006) Gold Catalysis. Angew. Chem. Int. Ed. 45, 7896.
85. Claus, P.; Bru1ckner, A.; Mohr, C.; Hofmeister, H. (2000) Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale: Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups. J. Am. Chem. Soc. 122, 11430.
86. Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. (2007) Synthesis and Size-Selective Catalysis by Supported Gold Nanoparticles: Study on Heterogeneous and Homogeneous Catalytic Process J. Phys. Chem. C 111, 4596.
87. Xuan, S.; Wang, Y.-X. J.; Yu, J. C.; Leung, K. C.-F. (2009) Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites. Langmuir 25, 11835.
88. Chithrani, B. D.; Ghazan. A. A.; Chan, C. W. (2006) Determining the size and the shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662.
89. Patra, H. K.; Banerjee, S.; Chaudhuri, U.; Lahiri, P.; Dasgupta, A. K. (2007) Cell selective response to gold nanoparticles. Nanomedicine 3, 111.
90. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy C. J.; Wyatt, M. D. (2005) Gold nanoparticles are taken up by human cells but do not cause cytotoxicity. Small 1, 325.
91. Shukla, R.; Nune, S. K.; Chanda, N.; Katti, K.; Mekapothula, S.; Kulkarni, R. R.; Welshons, W. V.; Kannan, R.; Katti, K. V. (2008) Soybeans as a Phytochemical Reservoir for the Production and Stabilization of Biocompatible Gold Nanoparticles. Small 4, 1425.
92. Chopra, N.; Bachas, L. G.; Knecht, M. R. (2009) Fabrication and Biofunctionalization of Carbon-Encapsulated Au Nanoparticles Chem. Mater. 21, 1176.
93. Schroedter, A.; Weller, H. (2002) Ligand Design and Bioconjugation of Colloidal Gold Nanoparticles. Angew. Chem. Int. Ed. 41, 3218.
94. Kumar, S. A.; Peter, Y.-A.; Nadeau, J. L. (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19, 495101.
95. Bharathi, S.; Nogami, M. (2001) A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst 126, 1919.
96. Yang, J.; Eom, K.; Lim, E.-K.; Park, J.; Kang, Y.; Yoon, D. S.; Na, S.; Koh, E. K.; Suh, J.-S.; Huh, Y.-M.; Kwon, T. Y.; Haam, S. (2008) In Situ Detection of Live Cancer Cells by Using Bioprobes Based on Au Nanoparticles. Langmuir 24, 12112.
97. Zayats, M.; Baron, R.; Popov, I.; Willner, I. (2005) Biocatalytic Growth of Au Nanoparticles: From Mechanistic Aspects to Biosensors Design. Nano Lett. 5, 21.
98. Jiang, X.; Shang, L.; Wang, Y.; Dong, S. (2005) Cytochrome c Superstructure Biocomposite Nucleated by Gold Nanoparticle: Thermal Stability and Voltammetric Behavior. Biomacromolecules 6, 3030.
99. Kuo, W.-S.; Wu, C.-M.; Yang, Z.-S.; Chen, S.-Y.; Chen, C.-Y.; Huang, C.-C.; Li, W.-M.; Sun C.-K.; Yeh C.-S. (2008) Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells. Chem. Commun. 4430.
100. Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I; Parak, W. J.; Chang, W. H. (2009) Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS NANO 3, 395.
101. Siegel, R. W.; Hu, E.; Roco, M. C. (1999) WTEC panel report on nanostructure science and technology: R&D status and trends in nanoparticles, nanostructured materials, and nanodevices. Boston: Kluwer Academic.
102. Pieters, B. R.; Williams, R. A.; Webb, C. (1992) Magnetic carrier technology. In: Williams. R. A., ed. Colloid and Surface Engineering: Applications in the Process Industries. Oxford: Butterworth-Heinemann. pp. 248.
103. 黃世宏 (2009) 奈米粉體在分離及電化學感測上之應用研究,國立成功大學化學工程研究所博士論文。
104. 江宜蓁 (2008) 以有機金屬法合成兼具磁性光學特性之金屬複合奈米粒子,國立成功大學化學工程研究所博士論文。
105. Chaudhuri, B. K.; Banerjee, A.; Pal, S. in: Nalwa H. S. (Ed.) (2004) Encyclopedia of Nanoscience and Nanotechnology, California: American Scientific Publishers vol. 5, p. 41.
106. Adschiri, T.; Hakuta, Y.; Arai, K. (2000) Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions. Ind. Eng. Chem. Res. 39, 4901.
107. Chang, Y. C.; Chen, D. H. (2005) Preparation and Adsorption Properties of Monodisperse Chitosan-bound Fe3O4 Magnetic Nanoparticles for Removal of Cu(II) Ions. J. Colloid Interface Sci. 283, 446.
108. Chang, Y. C.; Chang, S. W.; Chen, D. H. (2006) Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co(II) ions. React. Funct. Polym. 66, 335.
109. Chang, Y. C.; Chen, D. H. (2006) Recovery of Gold(III) Ions by a Chitosan-coated Magnetic Nano-adsorbent. Gold Bull. 39, 98.
110. Banerjee, S. S.; Chen, D. H. (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147, 792.
111. Davies, M. J.; Bruce, I. J.; Smethurst, D. E. (1994) Magnetic solid phase supports for affinity purification of nucleic acids. In: Pyle D L, ed. Separations for Biotechnology 3. Cambridge: The Royal Society of Chemistry, pp. 152-158.
112. Ennis, M. P.; Wisdom, G. B. (1991) A magnetizable solid phase for enzyme extraction. Appl. Biochem. Biotechnol. 30, 155.
113. Häfeli, U.; Schütt, W.; Teller, J.; Zborowski, M. (1997) Scientific and Clinical Applications of Magnetic Carriers. New York: Plenum Press.
114. Hirschbein, B. L.; Brown, D. W.; Whitesides, G. M. (1982) Magnetic separations in chemistry and biochemistry. Chemtech 12, 172.
115. Setchell, C. H. (1985) Magnetic separations in biotechnology-A review. J. Chem. Tech. Biotechnol. 35B, 175.
116. Roath, S. (1993) Biological and biomedical aspects of magnetic fluid technology. J. Magn. Magn. Mater. 122, 329.
117. Banerjee, S. S.; Chen, D. H. (2007) Glucose-grafted Gum Arabic Modified Magnetic Nanoparticles: Preparation and Specific Interaction with Concanavalin A. Chem. Mater. 19, 3667.
118. Bahar, T.; Celebi, S. S. (1999) Immobilization of gluocoamylase on magnetic poly(styrene) particles. J. Appl. Polym. Sci. 72, 69.
119. Garcia, A.; Oh, S.; Engler, C. R. (1989) Cellulase immobilization on Fe3O4 and characterization. Biotechnol. Bioeng. 33, 321.
120. Halling, P. J.; Dunnill, P. (1980) Magnetic supports for immobilized enzymes and bioaffinity adsorbents. Enzyme Microb. Technol. 2, 2.
121. Liu, C.; Honda, H.; Ohshima, A.; Shinkai, M.; Kobayashi, T. (2000) Development of chitosan-magnetite aggregates containing Nitrosomonas europaea cells for nitrification enhancement. J. Biosci. Bioeng. 89, 420.
122. Banerjee, S. S.; Chen, D. H. (2007) Magnetic Nanoparticles Grafted with Cyclodextrin for Hydrophobic Drug Deliver. Chem. Mater. 19, 6345.
123. Rudge, S. R.; Kurtz, T. L.; Vessely, C. R.; Catterall, L. G.; Williamson, D. L. (2000) Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21, 1411.
124. Rudge, S.; Peterson, C.; Vessely, C.; Koda, J.; Stevens, S.; Catterall, L. (2001) Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier. J. Control. Release 74, 335.
125. Widder, D. J.; Senyei, A. E.; Ranney, D. F. (1979) Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv. Pharmacol. Chemother. 16, 213.
126. Gupta, P. K.; Hung, C. T. (1989) Magnetically controlled targeted micro-carrier systems. Life Sci. 44, 175.
127. Löster, K.; Seidel, S.; Kirstein, D.; Schneider, F.; Noll, F. (1992) Novel antibody coating of a magnetizable solid phase for use in enzyme immunoassays. J. Immunol. Methods 148, 41.
128. Schütt, W.; Grüttner, C.; Häfeli, U.; Zborowski, M.; Teller, J.; Putzar, H.; Schümichen, C. (1997) Applications of magnetic targeting in diagnosis and therapy – possibilities and limitations: a mini-review. Hybridoma 16, 109.
129. Brigger, D. C.; Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 54, 631.
130. Halavaara, J.; Tervahartiala, P.; Isonieme, H.; Hockerstedt, K. (2002) Efficacy of sequential use of supermagnetic iron oxide and gadolinium in liver MR imaging. Acta Radiologica 43, 180.
131. 柯揚船,皮特斯壯 (2004) 聚合物-無機奈米複合材料,台北:五南。
132. Kim, H.; Popov, B. N. (2002) Characterization of hydrous ruthenium oxide_carbon nanocomposite supercapacitors prepared by a colloidal method. J. Power Sources 104, 52.
133. Deutsch, D. S.; Lafaye, G.; Liu, D.; Chandler, B.; Williams, C. T.; Amiridis, M. D. (2004) Decomposition and activation of Pt-dendrimer nanocomposites on a silica support. Catalysis Letters 97, 139.
134. Sih, B. C.; Wolf, M. O. (2005) Metal nanoparticle - conjugated polymer nanocomposites. Chem. Commun. 3375.
135. Park, J. -E.; Atobe, M.; Fuchigami, T. (2005) Sonochemical Synthesis of Inorganic–Organic Hybrid Nanocomposite Based on Gold Nanoparticles and Polypyrrole. Chem. Lett. 34, 96.
136. Tuncer, E.; Sauers, I.; James, D. R.; Ellis, A. R.; Paranthaman, M. P.; Goyal, A.; More, K. L. (2007) Enhancement of dielectric strength in nanocomposites. Nanotechnology 18, 325704.
137. He, J. -A.; Valluzzi, R.; Yang, K.; Dolukhanyan, T.; Sung, C.; Kumar, J.; Tripathy, S. K.; Samuelson, L. (1999) Electrostatic Multilayer Deposition of a Gold-Dendrimer Nanocomposite. Chem. Mater. 11, 3268.
138. Uhlenhaut, D. I.; Smith, P.; Caseri, W. (2006) Color Switching in Gold—Polysiloxane Elastomeric Nanocomposites. Adv. Mater. 18, 1653.
139. Patton, D.; Locklin, J.; Meredith, M.; Xin, Y.; Advincula, R. (2004) Nanocomposite Hydrogen-Bonded Multilayer Ultrathin Films by Simultaneous Sexithiophene and Au Nanoparticle Formation. Chem. Mater. 16, 5063.
140. 陳東煌 (2003) 複合奈米粒子的製備與應用,化工技術,120,180。
141. Caruso, F. (2001) Nanoengineering of Particle Surfaces. Adv. Mater. 13, 11.
142. Zhong, C. L.; Maye, M. M. (2001) Core-Shell Assembled Nanoparticles as Catalysts. Adv. Mater. 13, 1507.
143. Agrawal, V. V.; Mahalakshmi, P.; Kulkarni, G. U.; Rao, C. N. R. (2006) Nanocrystalline Films of Au-Ag, Au-Cu, and Au-Ag-Cu Alloys Formed at the Organic-Aqueous Interface. Langmuir 22, 1846.
144. Shin, Y.; Bae, I.-T.; Arey, B. W.; Exarhos, G. J. (2008) Facile Stabilization of Gold-silver Alloy Nanoparticles on Cellulose Nanocrystal. J. Phys. Chem. C 112, 4844.
145. Liu, J.-H.; Wang, A.-Q.; Chi, Y.-S.; Lin, H.-P.; Mou, C.-Y. Synergistic Effect in an Au-Ag Alloy Nanocatalyst: CO Oxidation. J. Phys. Chem. B 109, 40.
146. Ji, T.; Lirtsman, V. G.; Avny, Y.; Davidov, D. (2001) Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-Shell/Magnetic Beads. Adv. Mater. 13, 1253.
147. Lee, J.-M.; Kim, D.-W.; Lee, Y.-H.; Oh, S.-G. (2005) New Approach for Preparation of Silver–Polystyrene Heterogeneous Nanocomposite by Polyol Process. Chemistry Letters 34, 928.
148. Ji, X.; Shao, R.; Elliott, A. M.; Stafford, R. J.; Esparza-Coss, E.; Bankson, J. A.; Liang, G.; Luo, Z.-P.; Park, K.; Markert, J. T.; Li, C. (2007) Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy. J. Phys. Chem. C 111, 6245.
149. Iler, R. K. (1966) Multilayers of colloidal particles. J. Colloid Interface. Sci. 21, 569.
150. Decher, G.; Hong, J. D.; Schmitt, (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. J. Thin Solid Films 210/211, 831.
151. Wang, T. C.; Chen, B.; Rubner, M. F.; Cohen, R. E. (2001) Selective Electroless Nickel Plating on Polyelectrolyte Multilayer Platforms. Langmuir 17, 6610.
152. Picart, C.; Elkaim, R.; Richert, L.; Audoin, F.; Arntz, Y.; Cardoso, M. S.; Schaaf, P.; Voegel, J.; Frisch, B. (2005) Primary Cell Adhesion on RGD-Functionalized and Covalently Crosslinked Thin Polyelectrolyte Multilayer Films. Adv. Funct. Mater. 15, 83.
153. Cott, K. E. V.; Guzy, M.; Neyman, P.; Brands, C.; Heflin, J. R.; Gibson, H. W.; Davis, R. M. (2002) Layer-by-layer deposition and ordering of low-molecular-weight dye molecules for second-order nonlinear optics. Angew. Chem. Int. Ed. 41, 3236.
154. 吳建成,陳東煌 (2005) 逐層自組裝奈米結構多層膜,化工資訊與商情,23,64。
155. Zhai, Y.; Zhai, J.; Wang, Y.; Guo, S.; Ren, W.; Dong, S. (2009) Fabrication of Iron Oxide Core/Gold Shell Submicrometer Spheres with Nanoscale Surface Roughness for Efficient Surface-Enhanced Raman Scattering. J. Phys. Chem. C 113, 7009.
156. Sugimoto, T. (1987) Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 28, 65.
157. Zhang, Z.; Zhao, B.; Hu, L. (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical-reduction processes. J. Solid State Chem. 121, 105.
158. Lee, J.; Isobe, T.; Senna, M. (1996) Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. J. Colloid Interface Sci. 177, 490.
159. Sun, X.; Jiang, X.; Dong, S.; Wang, E. (2003) One-step synthesis and size control of dendrimer-protected gold nanoparticles: A heat-treatment-based strategy. Macromol. Rapid Commun. 24, 1024.
160. Sun, X.; Dong, S.; Wang, E. (2004) One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process. Polymer 45, 2181.
161. Osseo-Asare, K.; Arriagada, F. J. (1990) Synthesis of nanosize particles in reverse microemulsions. Ceram. Trans. 12, 3.
162. Fendler, J. H. (1987) Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87, 877.
163. Osseo-Asare, K.; Arriagada, F. J. (1990) Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids and surfaces 50, 321.
164. Yonezawa, T.; Tominaga, T.; Richard, D. (1996) Stabilizing structure of tertiary amine-protected rhodium colloid dispersions in chloroform. J. Chem. Soc. Dalton Trans. 783.
165. Reetz, M. T.; Winter, M.; Tesche, B. (1997) Regioselective palladium-catalyzed coupling reactions of vinyl chlorides with carbon nucleophiles. Chem. Commun. 535.
166. Website Link: http://www.epa.gov/greenchemistry/
167. Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. (2002) Green chemistry: science and politics of change. Science 297, 807.
168. Poliakoff, M.; Anastas, P. (2001) Green Chemistry: A principled stance. Nature 413, 257.
169. Gross, R. A.; Kalra, B. (2002) Biodegradable Polymers for the Environment. Science 297, 803.
170. DeSimone, J. M. (2002) Practical Approaches to Green Solvents. Science 297, 799.
171. Raveendran, P.; Fu, J.; Wallen, S. L. (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940.
172. Hillie, T.; Hlophe. M. (2007) Nanotechnology and the challenge of clean water. Nat. Nanotechnol. 2, 663.
173. Jones, R. (2007) Can nanotechnology ever prove that it is green? Nat. Nanotechnol. 2, 71.
174. Raveendran, P.; Fu, J.; Wallen, S. L. (2006) A simple and green method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem. 8, 34.
175. Si, S.; Bhattacharjee, R. R.; Banerjee, A.; Mandal, T. K. (2006) A Mechanistic and Kinetic Study of the Formation of Metal Nanoparticles by Using Synthetic Tyrosine-Based Oligopeptides. Chem. Eur. J. 12, 1256.
176. Nadagouda, M. N.; Varma, R. S. (2006) Green and controlled Synthesis of Gold and Platinum Nanomaterials Using Vitamin B2: Density-assisted Self-assembly of Nanospheres, Wires and Rods. Green Chem. 8, 516.
177. Ankamwar, B.; Damle, C.; Ahmad, A.; Sastry, M. (2005) Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotech. 5, 1665.
178. Huang, Z. Y.; Mills, G.; Hajek, B. (1993) Spontaneous formation of silver particles in basic 2-propanol. J. Phys. Chem. 97, 11542.
179. Liu, H.; Hou, P.; Zhang, W.; Wu, J. (2010) Synthesis of monosized coreshell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloid Surf. A-Physicochem. Eng. Asp. 356, 21.
180. Wu, Y.; Zhang, T.; Zheng, Z.; Ding, X.; Peng, Y. (2010) A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties. Mater. Res. Bull. 45, 513.
181. Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. (2007) Synthesis and Size-Selective Catalysis by Supported Gold Nanoparticles:Study on Heterogeneous and Homogeneous Catalytic Process. J. Phys. Chem. C 111, 4596.
182. Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26, 2885.
183. Liu, X.-Y.; Cheng, F.; Liu, Y.; Liua, H.-J.; Chen, Y. (2010) Preparation and characterization of novel thermoresponsive gold nanoparticles and their responsive catalysis properties. J. Mater. Chem. 20, 360.
184. Wang, Y.; Wei, G.; Zhang, W.; Jiang, X.; Zheng, P.; Shi, L.; Dong, A. (2007) Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles. J. Mol. Catal. A-Chem. 266, 233.
185. Shin, K. S.; Choi, J.-Y.; Park, C. S.; Jang, H. J.; Kim, K. (2009) Facile Synthesis and Catalytic Application of Silver-Deposited Magnetic Nanoparticles. Catal. Lett. 133, 1.
186. Hirai, H.; Nakao, Y.; Toshima, N. (1979) Preparation of Colloidal Transition Metals in Polymer by Reduction with Alcohols or Ethers. J. Macromol. Sci. Chem. A13, 727.
187. Hirai, H.; Nakao, Y.; Toshima, N. (1978) Preparation of Colloidal Rhodium in Poly(vinyl Alcohol) by Reduction with Methanol. J. Macromol. Sci. Chem. A12, 1117.
188. Hirai, H. (1979) Formation and Catalytic Functionality of Synthetic Polymer-Noble Metal Colloid. J. Macromol. Sci. Chem. A13, 633.
189. Bandyopadhyaya, R.; Nativ-Roth, E.; Regev, O.; Yerushalmi-Rozen, R. (2002) Stabilization of Individual Carbon Nanotubes in Aqueous Solutions. Nano Lett. 2, 25.
190. Williams, D. N.; Gold, K. A.; Holoman, T. R. P.; Ehrman, S. H.; Wilson Jr., O. C. (2006) Surface modification of magnetic nanoparticles using gum Arabic. J. Nanopart. Res. 8, 749.
191. Goia, D. V.; Matijevic, E. (1999) Tailoring the particle size of monodispersed colloidal gold. Colloid Surf. A-Physicochem. Eng. Asp. 146, 139.
192. Kattumuri, V.; Katti, K.; Bhaskaran, S.; Botte, E. J.; Casteel, S. W.; Fent, G. M.; Robertson, D. J.; Chandrasekhar, M.; Kanna, R.; Katti, K. V. (2007) Naturally Occurring Gum Arabic as a phyto construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray contrast imaging studies. Small 3, 333.
193. Osman, M. E.; Williams, P. A.; Menzies, A. R.; Phillips, G. O. (1993) Characterization of commercial samples of gum arabic. J. Agric. Food Chem. 41, 71.
194. Nishi, K. K.; Jayakrishnan, A. (2004) Preparation and evaluation of primaquine-conjugated gum arabic microspheres. Biomacromolecules 5, 1489.
195. Bhargava, S. K.; Booth, J. M.; Agrawal, S.; Coloe, P.; Kar, G. (2005) Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21, 5949.
196. Shao, Y.; Jin, Y.; Dong, S. (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 1104.
197. Chia, K. K.; Cohen, R. E.; Rubner, M. F. (2008) Amine-Rich Polyelectrolyte Multilayer Nanoreactors for in Situ Gold Nanoparticle Synthesis. Chem. Mater. 20, 6756.
198. Esumi, K.; Miyamoto, K.; Yoshimura, T. (2002) Comparison of PAMAM–Au and PPI–Au Nanocomposites and Their Catalytic Activity for Reduction of 4-Nitrophenol. J. Colloid Interface Sci. 254, 402.
199. Esumi, K.; Isono, R.; Yoshimura, T. (2004) Preparation of PAMAM- and PPI-Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir 20, 237.
200. Gratzel, M.; Frank, A. J. (1982) Interfacial Electron-Transfer Reactions In Colloldal Semiconductor Dispersions. Kinetic Analysis. J. Phys. Chem. 86, 2964.
201. Laidler, K. J.; Meiser, J. H.; Sanctuary, B. C. (2003) Physical Chemistry. Boston: Houghton Mifflin, pp.983.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw