進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1807202016200300
論文名稱(中文) 射頻磁控濺鍍法製備應用於電阻式記憶體之鑭釤氧薄膜的電阻轉換特性影響及機制研究
論文名稱(英文) Resistive Switching Properties and Conduction Mechanisms of LaSmOx Thin Film by RF Sputtering for RRAM Applications
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 朱祐增
研究生(英文) Yu-Tseng Chu
學號 N26074134
學位類別 碩士
語文別 中文
論文頁數 95頁
口試委員 指導教授-黃正亮
口試委員-施權峰
口試委員-蔡健益
口試委員-尤正祺
口試委員-許正興
中文關鍵字 鑭釤氧薄膜  射頻磁控濺鍍法  電阻式記憶體  多晶態  金屬後退火 
英文關鍵字 LaSmOx  RF Sputter  RRAM  Polycrystalline  Post Metal Annealing (PMA) 
學科別分類
中文摘要 本實驗利用射頻磁控濺鍍系統(RF magnetron sputtering system)在透明ITO基板上進行LaSmOx薄膜沉積,並以蒸鍍機蒸鍍金屬上電極Al製成Al/LSO/ITO元件以觀察其電阻轉換特性,本研究主要利用氧空缺形成導通燈絲,進行電阻轉換(RS)特性的探討。第一部分討論不同濺鍍時間(5 min、10 min、15 min、20 min及30 min)對電阻式記憶體特性的關係,薄膜的厚度對記憶體的RS特性有很大的影響,薄膜沉積厚度與濺鍍時間呈線性關係,濺鍍20分鐘的薄膜其操作次數可達相對最高的309次,操作電壓和電阻分佈的累積概率顯示,其均勻性及穩定性皆隨著濺鍍時間的增長而變好,高低阻值(Ron/Roff)皆大於10,記憶時間也都達到104秒。
第二部分討論不同沉積氣氛比例(Ar:O2)形成之薄膜,並討論氧空缺對元件特性的影響,當通入O2比例10%時氧離子會填補薄膜中的氧空缺,造成氧空缺下降,當通入O2的比例大於20%時造成電漿的平均自由路徑縮短,而過多的氧分壓也降低電漿中氬離子的產生,導致薄膜厚度變薄、薄膜品質變差、氧空缺及缺陷增加,其所需的導通燈絲較粗,使操作電壓上升也使操作次數下降,無法有效的提升RS特性。
第三部分,進行薄膜退火與金屬後退火(PMA)製程,單純的薄膜退火,造成晶界大量產生,導致導通燈絲隨意地生長及斷裂在晶界處,造成LRS與HRS的電阻阻態不穩定,RRAM特性變差;利用PMA方法與上電極Al一同進行退火,會在上電極Al與LSO薄膜間形成介面層AlOx,AlOx的產生成功抑制薄膜氧離子散失,造成薄膜氧空缺減少,漏電流減小,Ron/Roff值增大,操作電壓穩定,RRAM元件變好使操作次數大幅增加,在PMA@400oC下擁有最佳RS特性,其為雙極的開關操作,操作次數高達約4850次,Ron/Roff維持在105,記憶時間也達到104秒,為最佳的電阻式記憶體特性。
最後一部分利用金屬上電極的改變,觀測對元件RS特性的變化,發現上電極在Al或Ti之下,其低阻態皆為歐姆導通機制,高阻態皆為空間限制電荷的導通機制;電極金屬對介電層薄膜內部的空缺有很大的相關性,而上下電極金屬的功函數差異,也對元件的RS特性造成很大的影響。
英文摘要 Polycrystalline LaSmOx (LSO) thin films were prepared by using RF sputtering and the bipolar resistive switching (BRS) properties in the Al/LSO/ITO structure were investigated. The impact of Ar/O2 ratio, film thickness and post metal annealing (PMA) condition on the resistive switching (RS) properties were also studied. The conductive filaments are mainly dominated by the numbers of oxygen vacancies, which can be controlled through a different deposition atmosphere Ar/O2 ratio and film thickness. The film thickness decreases significantly as the oxygen content increases resulting in a high switching voltage and worse cycling performance. In addition, the RS characteristics can be improved by PMA treatment due to film densification and the formation of AlOx interface layer in between the top electrode and the LaSmOx thin film. The proposed RRAM exhibits bipolar resistive switching characteristic for 4850 switching cycle times and high stable retention characteristic for over 104 seconds with a Ron/Roff ratio of around 105 at a post metal annealing temperature 400oC.
論文目次 摘 要 I
致謝 XVII
目錄 XX
圖目錄 XXIII
表目錄 XXV
第一章 緒 論 1
1-1前言 1
1-2研究動機 3
第二章 文獻回顧 4
2-1記憶體介紹 4
2-1-1揮發性記憶體(Volatile Memory, VM) 5
2-1-2非揮發性記憶體(Non-Volatile Memory, NVM) 6
2-2電阻式記憶體 10
2-2-1電阻轉換之基本原理 10
2-3電阻轉換機制 12
2-3-1 焦耳熱效應(Jouel heating) 13
2-3-2 價電子轉換效應(Valance change effect) 13
2-3-3 離子遷移機制(Ion migration) 15
2-4漏電流傳導機制 16
2-4-1 電極限制傳導機制(electrode-limited) 17
2-4-2 本體限制傳導機制(bulk-limited) 19
2-5 材料選擇 LaSmO3 24
第三章 實驗步驟與方法 25
3-1 實驗材料 25
3-2 製程設備 26
3-2-1 射頻磁控濺鍍系統 26
3-2-2 高溫爐 28
3-2-3 電子束蒸鍍機 28
3-3 分析儀器 30
3-3-1 多功能X光薄膜繞射分析(X-ray Diffractometer, XRD) 31
3-3-2 高解析掃描電子顯微鏡(High Resolution Scanning Electron Microscope, HR-SEM) 32
3-3-3 半導體參數分析儀 32
3-3-4 高解析穿透式顯微鏡(Ultrahigh Resolution Transmission Electron Microscope, HR-TEM) 33
3-3-5 原子力顯微鏡(Atomic Force Microscope, AFM) 33
3-3-6 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 34
3-3-7紫外光-可見光譜儀(UV/VIS Spectophotometer) 34
3-4實驗流程 36
3-4-1 實驗步驟 37
第四章 結果與討論 40
4-1 LaSmOx薄膜製備 40
4-1-1 粉末靶材XRD分析 40
4-1-2 薄膜成分與元件結構分析 42
4-2 不同濺鍍時間之Al/LSO/ITO電阻轉換分析 45
4-3 不同沉積氣氛下Al/LSO/ITO電阻轉換特性影響 55
4-3-1薄膜分析 55
4-3-2電阻轉換特性分析 60
4-4不同退火溫度下Al/LSO/ITO電阻轉換特性影響 64
4-4-1薄膜分析 64
4-4-2電阻轉換特性分析 69
4-4-3 Al/LSO/ITO金屬熱退火前後導通模型比較 78
4-5不同上電極對電阻轉換特性分析 80
4-5-1電阻轉換特性分析 80
4-5-2 導通機制討論 83
4-6 比較與討論 87
第五章 結 論 89
第六章 參考文獻 91

參考文獻 [1] H. Akinaga and H. Shima, "Resistive random access memory (ReRAM) based on metal oxides," Proceedings of the IEEE, vol. 98, no. 12, pp. 2237-2251, 2010.
[2] H.-Y. Lee et al., "Low-power switching of nonvolatile resistive memory using hafnium oxide," Japanese journal of applied physics, vol. 46, no. 4S, p. 2175, 2007.
[3] M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, "Multilevel resistive switching with ionic and metallic filaments," Applied Physics Letters, vol. 94, no. 23, p. 233106, 2009.
[4] G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, and S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline Ni O x film," Applied Physics Letters, vol. 91, no. 22, p. 222103, 2007.
[5] A. Chen, S. Haddad, and Y.-C. Wu, "A temperature-accelerated method to evaluate data retention of resistive switching nonvolatile memory," IEEE electron device letters, vol. 29, no. 1, pp. 38-40, 2007.
[6] L. Goux, J. Lisoni, T. Gille, K. Attenborough, and D. Wouters, "Low-voltage resistive switching within an oxygen-rich Cu/SbTe interface for application in nonvolatile memory," Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H245-H247, 2008.
[7] H. Y. Jeong, Y. I. Kim, J. Y. Lee, and S.-Y. Choi, "A low-temperature-grown TiO2-based device for the flexible stacked RRAM application," Nanotechnology, vol. 21, no. 11, p. 115203, 2010.
[8] L. Chen et al., "Resistive switching properties of plasma enhanced-ALD La2O3 for novel nonvolatile memory application," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 1, p. 01A148, 2012.
[9] H. Zhao, H. Tu, F. Wei, Y. Xiong, X. Zhang, and J. Du, "Characteristics and mechanism of nano‐polycrystalline La2O3 thin‐film resistance switching memory," physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 11, pp. 1005-1008, 2013.
[10] S.-Y. Huang et al., "Resistive switching characteristics of Sm2O3 thin films for nonvolatile memory applications," Solid-State Electronics, vol. 63, no. 1, pp. 189-191, 2011.
[11] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J.-S. Zhao, and C. S. Hwang, "Identification of a determining parameter for resistive switching of Ti O 2 thin films," Applied Physics Letters, vol. 86, no. 26, p. 262907, 2005.
[12] K.-C. Liu et al., "Investigation of the effect of different oxygen partial pressure to LaAlO3 thin film properties and resistive switching characteristics," Thin Solid Films, vol. 520, no. 4, pp. 1246-1250, 2011.
[13] P. Misra, S. P. Pavunny, and R. S. Katiyar, "On the resistive switching and current conduction mechanisms of amorphous LaGdO3 films grown by pulsed laser deposition," ECS Transactions, vol. 53, no. 3, pp. 229-235, 2013.
[14] Z. Yan and J.-M. Liu, "Resistance switching memory in perovskite oxides," Annals of Physics, vol. 358, pp. 206-224, 2015.
[15] X. Liu et al., "Organic nonpolar nonvolatile resistive switching in poly (3, 4-ethylene-dioxythiophene): Polystyrenesulfonate thin film," Organic Electronics, vol. 10, no. 6, pp. 1191-1194, 2009.
[16] W. Su, Q. Zhuang, D. Huo, and B. Li, "Dielectric and interface stability of LaSmO3 films," Surface Review and Letters, vol. 19, no. 06, p. 1250064, 2012.
[17] K.-J. Lee, L.-W. Wang, T.-K. Chiang, and Y.-H. Wang, "Effects of electrodes on the switching behavior of strontium titanate nickelate resistive random access memory," Materials, vol. 8, no. 10, pp. 7191-7198, 2015.
[18] W.-Y. Yang and S.-W. Rhee, "Effect of electrode material on the resistance switching of Cu 2 O film," Applied Physics Letters, vol. 91, no. 23, p. 232907, 2007.
[19] D. S. Jeong et al., "Emerging memories: resistive switching mechanisms and current status," Reports on progress in physics, vol. 75, no. 7, p. 076502, 2012.
[20] W.-G. Kim and S.-W. Rhee, "Effect of the top electrode material on the resistive switching of TiO2 thin film," Microelectronic Engineering, vol. 87, no. 2, pp. 98-103, 2010.
[21] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, "Recent progress in resistive random access memories: materials, switching mechanisms, and performance," Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[22] D.-S. Ko, S.-I. Kim, T.-Y. Ahn, S.-D. Kim, Y.-H. Oh, and Y.-W. Kim, "Effect of the electrode materials on the resistive switching of Ti4O7," Applied Physics Letters, vol. 101, no. 5, p. 053502, 2012.
[23] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕ Pr 0.7 Ca 0.3 Mn O 3 interface," Applied Physics Letters, vol. 85, no. 18, pp. 4073-4075, 2004.
[24] P. He et al., "Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory," Semiconductor Science and Technology, vol. 32, no. 5, p. 055016, 2017.
[25] K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, and C.-C. Kuo, "Bipolar resistive switching effect in Gd2O3 films for transparent memory application," Microelectronic engineering, vol. 88, no. 7, pp. 1586-1589, 2011.
[26] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," in Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 158-165.
[27] U. Russo et al., "Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM," in 2007 IEEE International Electron Devices Meeting, 2007: IEEE, pp. 775-778.
[28] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges," Advanced materials, vol. 21, no. 25-26, pp. 2632-2663, 2009.
[29] C.-C. Hsu, C.-C. Tsao, Y.-H. Chen, and X.-Z. Zhang, "Bipolar resistive switching characteristics of a sol-gel InZnO oxide semiconductor," Physica B: Condensed Matter, vol. 561, pp. 64-69, 2019.
[30] C.-C. Hsu, T.-C. Wang, and C.-C. Tsao, "Forming-free sol-gel ZrOx resistive switching memory," Journal of Alloys and Compounds, vol. 769, pp. 65-70, 2018.
[31] T.-L. Tsai, H.-Y. Chang, J. J.-C. Lou, and T.-Y. Tseng, "A high performance transparent resistive switching memory made from ZrO2/AlON bilayer structure," Applied Physics Letters, vol. 108, no. 15, p. 153505, 2016.
[32] F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, vol. 2014, 2014.
[33] C. Child, "Discharge from hot CaO," Physical Review (Series I), vol. 32, no. 5, p. 492, 1911.
[34] H. Y. Jeong, S. K. Kim, J. Y. Lee, and S.-Y. Choi, "Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices," Journal of The Electrochemical Society, vol. 158, no. 10, p. H979, 2011.
[35] M. Wang et al., "Investigation of One-Dimensional Thickness Scaling on $hbox {Cu/HfO} _ {x}/hbox {Pt} $ Resistive Switching Device Performance," IEEE electron device letters, vol. 33, no. 11, pp. 1556-1558, 2012.
[36] C. Ramana, M. Vargas, G. Lopez, M. Noor-A-Alam, M. Hernandez, and E. Rubio, "Effect of oxygen/argon gas ratio on the structure and optical properties of sputter-deposited nanocrystalline HfO2 thin films," Ceramics International, vol. 41, no. 5, pp. 6187-6193, 2015.
[37] Z. Ji, Q. Mao, and W. Ke, "Effects of oxygen partial pressure on resistive switching characteristics of ZnO thin films by DC reactive magnetron sputtering," Solid State Communications, vol. 150, no. 39-40, pp. 1919-1922, 2010.
[38] J. B. Lee, S. H. Kwak, and H. J. Kim, "Effects of surface roughness of substrates on the c-axis preferred orientation of ZnO films deposited by rf magnetron sputtering," Thin Solid Films, vol. 423, no. 2, pp. 262-266, 2003.
[39] C. Chen et al., "Room-temperature electrically pumped near-infrared random lasing from high-quality m-plane ZnO-based metal-insulator-semiconductor devices," Nanoscale research letters, vol. 10, no. 1, p. 100, 2015.
[40] J. T. Gudmundsson and E. Thorsteinsson, "Oxygen discharges diluted with argon: dissociation processes," Plasma Sources Science and Technology, vol. 16, no. 2, p. 399, 2007.
[41] P. Liu et al., "Effect of exposure to ultraviolet-activated oxygen on the electrical characteristics of amorphous indium gallium zinc oxide thin film transistors," ECS Solid State Letters, vol. 2, no. 4, p. Q21, 2013.
[42] I. Salaoru, T. Prodromakis, A. Khiat, and C. Toumazou, "Resistive switching of oxygen enhanced TiO2 thin-film devices," Applied Physics Letters, vol. 102, no. 1, p. 013506, 2013.
[43] Y. Morita, S. Migita, W. Mizubayashi, M. Masahara, and H. Ota, "Two-step annealing effects on ultrathin EOT higher-k (k= 40) ALD-HfO2 gate stacks," Solid-state electronics, vol. 84, pp. 58-64, 2013.
[44] J. H. Park, N. Kurra, M. AlMadhoun, I. N. Odeh, and H. N. Alshareef, "A two-step annealing process for enhancing the ferroelectric properties of poly (vinylidene fluoride)(PVDF) devices," Journal of Materials Chemistry C, vol. 3, no. 10, pp. 2366-2370, 2015.
[45] K.-K. Chiang, J.-S. Chen, and J.-J. Wu, "Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiO x/ITO memory devices modeled with a dual-oxygen-reservoir structure," ACS applied materials & interfaces, vol. 4, no. 8, pp. 4237-4245, 2012.
[46] S. Lee et al., "Impact of Device Area and Film Thickness on Performance of Sol-Gel Processed ZrO 2 RRAM," IEEE Electron Device Letters, vol. 39, no. 5, pp. 668-671, 2018.
[47] U. Chand, K.-C. Huang, C.-Y. Huang, C.-H. Ho, C.-H. Lin, and T.-Y. Tseng, "Investigation of thermal stability and reliability of HfO2 based resistive random access memory devices with cross-bar structure," Journal of Applied Physics, vol. 117, no. 18, p. 184105, 2015.
[48] P.-S. Chen, H.-Y. Lee, Y.-S. Chen, F. Chen, and M.-J. Tsai, "Improved bipolar resistive switching of HfOx/TiN stack with a reactive metal layer and post metal annealing," Japanese Journal of Applied Physics, vol. 49, no. 4S, p. 04DD18, 2010.
[49] L. Chen et al., "Highly Uniform Bipolar Resistive Switching With $hbox {Al} _ {2}hbox {O} _ {3} $ Buffer Layer in Robust NbAlO-Based RRAM," IEEE electron device letters, vol. 31, no. 4, pp. 356-358, 2010.
[50] T. Guo, T. Tan, and Z. Liu, "The effect of annealing temperature on resistive switching behaviors of HfO x film," Journal of Materials Science: Materials in Electronics, vol. 26, no. 9, pp. 6699-6703, 2015.
[51] H. Wu, M. Xue, J. Ou, F. Wang, and W. Li, "Effect of annealing temperature on surface morphology and work function of ZnO nanorod arrays," Journal of alloys and compounds, vol. 565, pp. 85-89, 2013.
[52] 簡佳珊, "射頻磁控濺鍍法製備應用於RRAM之鑭釓氧薄膜的電特性及機制研究," 碩士, 電機工程學系, 國立成功大學, 台南市, 2019.
[53] P. Misra, S. P. Pavunny, Y. Sharma, and R. S. Katiyar, "Resistive Switching and Current Conduction Mechanisms in Amorphous LaLuO3 Thin Films Grown by Pulsed Laser Deposition," Integrated Ferroelectrics, vol. 157, no. 1, pp. 47-56, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw