進階搜尋


下載電子全文  
系統識別號 U0026-1807201911231800
論文名稱(中文) 無開口和含開口加強磚造牆體分析模型
論文名稱(英文) Numerical modeling of confined masonry walls with and without openings
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 黃嘉德
研究生(英文) Chia-Te Huang
學號 N66064187
學位類別 碩士
語文別 中文
論文頁數 158頁
口試委員 指導教授-洪崇展
共同指導教授-洪李陵
口試委員-蕭輔沛
口試委員-杜怡萱
口試委員-邱聰智
中文關鍵字 加強磚造  無開口  含開口  TEASPA  OpenSees  折減係數法 
英文關鍵字 Confined masonry  Opening  TEASPA  OpenSees  Reduction factor 
學科別分類
中文摘要 台灣典型校舍及街屋中常出現鋼筋混凝土構架填充磚牆,過去認定為非結構元件的填充磚牆,實際上影響整體結構物面內方向之勁度、強度和能量消散能力。鋼筋混凝土構架填充磚牆也廣泛應用於國外,1950年代起,學者開始研究如何評估構架填充磚牆之受力行為,並嘗試發展出可靠的數值模型,其中最常見之分析模型為將磚牆模擬成單根等值對角桿件。等值對角桿件描述磚牆側力位移關係,現已有許多學者對勁度和極限強度之預測提出不同建議。另外,實際上存在於建築物中的磚牆多含開口,而過去試驗指出開口將影響磚牆之受力行為,因此本研究將發展出一套適用於無開口和含開口磚牆之分析模型。
本研究第一部分針對無開口加強磚造進行分析,首先定義等值對角桿件模擬磚牆所需之相關參數,磚牆側力位移關係以TEASPA建議為主,並對其進行修正,以有限元素分析軟體OpenSees建立台灣傳統街屋設計之試體模型,進行側推分析,並驗證試驗與分析結果,最後,針對現有的分析模型及相關參數進行修正。
本研究第二部分針對含開口加強磚造進行分析,開口形式包含門型和窗型,不同形式的開口將磚牆分成一個或多個剪力元素,判斷完磚牆之剪力元素後,分析流程與無開口加強磚造大致相同,其中磚牆側力位移關係以邱聰智(2015)修正TEASPA建議為主,並對其進行修正,使無開口和含開口加強磚造之分析方法與模型相同。
最後,國外學者多使用折減係數法預測含開口磚牆之受力行為,折減係數法在耐震評估使用上有其便利性,因此本研究將迴歸出適用於預測國內含開口加強磚造受力行為之極限強度折減係數公式。
英文摘要 Masonry wall plays an important role in seismic performance of confined masonry. The single diagonal strut model is the simplest way to simulate the behavior of the masonry wall. In Taiwan, to describe the equivalent strut behavior, we use the force-displacement relationship proposed by TEASPA. In this study, the pushover analyses are performed by OpenSees computer program. From the comparison with the test and analysis results, correct the numerical model and relative parameters. The goal is to select the most accurate numerical model of confined walls with and without openings. On the part of the masonry walls with openings, it is convenience to use reduction factor to predict the stiffness and strength.
論文目次 摘要 I
目錄 IX
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 3
2.1 混凝土構架填充磚牆破壞模式 3
2.2 微觀與巨觀分析模型 5
2.2-1 微觀模型 5
2.2-2 巨觀模型 6
2.3 無開口磚牆單根對角等值桿件模型 10
2.3-1 等值桿件側力位移關係-勁度 10
2.3-2 等值桿件側力位移關係-強度 16
2.4 含開口磚牆分析模型 22
2.4-1 邱聰智(2015)三面圍束磚牆評估模型 22
2.4-2 張博閔(2018)三面圍束加強磚造分析模型 24
2.4-3 折減係數法 27
2.5 磚牆面外行為 29
2.5-1 預估磚牆面外行為能力 29
2.5-2 磚牆面內面外互制關係 31
第三章 無開口加強磚造分析 33
3.1 基準模型建立 33
3.1-1 混凝土材料模型 35
3.1-2 鋼筋材料模型 37
3.1-3 磚牆材料模型 38
3.2 驗證試體簡介 40
3.2-1 邱聰智B39L、B39T、B83L、B83T試體 40
3.2-2 林育瑄CS試體 40
3.2-3 吳國瑋P試體 41
3.2-4 謝孟勳FRB135試體 41
3.2-5 Mehrabi Specimen 9試體 41
3.2-6 Stylianidis F1N試體 42
3.2-7 Pier M2試體 42
3.3 無開口加強磚造磚牆側力位移關係 47
3.3-1 無開口加強磚造磚牆側力位移關係說明與計算流程 47
3.3-2 分析模型驗證與討論 51
3.4 修改無開口加強磚造磚牆側力位移關係 55
3.4-1 修改內容 55
3.4-2 分析模型驗證與討論 58
3.5 小結 81
第四章 含開口加強磚造分析 83
4.1 基準模型 83
4.2 驗證試體簡介 85
4.2-1 許元馨CD、CW試體 85
4.2-2 林育瑄CD-e試體 85
4.2-3 楊廷文CD-e-1.8、CW-e-1.8試體 86
4.3 含開口加強磚造磚牆側力位移關係 90
4.3-1 含開口加強磚造磚牆側力位移關係說明與計算流程 90
4.3-2 分析模型驗證與討論 94
4.4 修改含開口加強磚造磚牆側力位移關係 103
4.4-1 修改內容 103
4.4-2 分析模型驗證與討論 106
4.5 折減係數法 121
4.5-1 無開口和含開口加強磚造中磚牆提供強度 121
4.5-2 驗證國外折減係數公式 124
4.5-3 迴歸折減係數公式 128
4.6 小結 140
第五章 結論與建議 143
5.1 結論 143
5.2 建議 146
參考文獻 147
附錄A各試體計算材料卡輸入參數 153

參考文獻 吳國瑋(2017),「鋼筋混凝土構架內含填充磚牆之耐震補強研究」,國立台灣大學土木工程研究所碩士論文。
林育瑄(2016),「RC構架內含偏心開口不同構法磚牆面內側向加載試驗」,國立成功大學建築學系研究所碩士論文。
邱聰智(2015),「低矮型鋼筋混凝土住宅結構耐震快速評估法之開發與驗證」,國立臺灣大學土木工程學研究所博士論文。
張博閔(2018),「三邊圍束加強磚造磚牆性能曲線分析模型」,國立成功大學建築學系研究所碩士論文。
莊宗樺(2013),「部分圍束加強磚造高型磚牆面內受力行為研究」,國立成功大學建築學系研究所博士論文。
許元馨(2015),「不同開口形式加強磚造磚牆面內側向加載試驗」,國立成功大學建築學系研究所碩士論文。
陳奕信(2003),「含磚牆 RC 建築結構之耐震診斷」,國立成功大學建築學系研究所博士論文。
黃柏鈞(2017),「三面圍束磚牆耐震評估模型之驗證與改進」,國立交通大學土木工程學系研究所碩士論文。
楊廷文(2017),「RC構架內含偏心門窗開口加強磚造磚牆面內側推試驗」,國立成功大學建築學系研究所碩士論文。
蕭輔沛,鍾立來,葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,涂耀賢,柴駿甫,黃世建(2013),「校舍結構耐震評估與補強技術手冊(第三版)」,國家地震工程研究中心研究報告,NCREE-13-023,台北,299頁。
謝孟勳(2002),「加強磚造構架耐震評估與補强之研究」,逢甲大學土木及水利工程所碩士論文。
Al-Washali, H., Suzuki, Y., & Maeda, M. (2017). Seismic evaluation of reinforced concrete buildings with masonry infill wall. In The 16th world conference of earthquake engineering, Chile.
ASCE/SEI 41-06. (2006). Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Reston, Virginia.
ASCE/SEI 41-13. (2013). Seismic rehabilitation and retrofit of existing buildings, American Society of Civil Enineers, Reston, VA.
ASCE-41-17. (2017). ASCE Standard, ASCE/SEI, 41–17: Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Enineers, Reston, VA.
Asteris, P. G., Antoniou, S. T., Sophianopoulos, D. S., & Chrysostomou, C. Z. (2011). Mathematical macromodeling of infilled frames: state of the art. Journal of Structural Engineering, 137(12), 1508-1517.
Asteris, P. G., Cavaleri, L., Di Trapani, F., & Tsaris, A. K. (2017). Numerical modelling of out-of-plane response of infilled frames: state of the art and future challenges for the equivalent strut macromodels. Engineering Structures, 132, 110-122.
Asteris, P. G., Cotsovos, D. M., Chrysostomou, C. Z., Mohebkhah, A., & Al-Chaar, G. K. (2013). Mathematical micromodeling of infilled frames: state of the art. Engineering Structures, 56, 1905-1921.
Burton, H., & Deierlein, G. (2013). Simulation of seismic collapse in nonductile reinforced concrete frame buildings with masonry infills. Journal of Structural Engineering, 140(8), A4014016.
Chen, X., & Liu, Y. (2015). Numerical study of in-plane behaviour and strength of concrete masonry infills with openings. Engineering Structures, 82, 226-235.
Chiou, T. C., & Hwang, S. J. (2015). Tests on cyclic behavior of reinforced concrete frames with brick infill. Earthquake Engineering & Structural Dynamics, 44(12), 1939-1958.
Chrysostomou, C. Z., & Asteris, P. G. (2012). On the in-plane properties and capacities of infilled frames. Engineering Structures, 41, 385-402.
Crisafulli, F. J. (1997). Seismic behaviour of reinforced concrete structures with masonry infills.
Crisafulli, F. J., & Carr, A. J. (2007). Proposed macro-model for the analysis of infilled frame structures. Bulletin of the New Zealand Society for Earthquake Engineering, 40(2), 69-77.
Decanini, L. D., Liberatore, L., & Mollaioli, F. (2014). Strength and stiffness reduction factors for infilled frames with openings. Earthquake Engineering and Engineering Vibration, 13(3), 437-454.
Di Trapani, F., Macaluso, G., Cavaleri, L., & Papia, M. (2015). Masonry infills and RC frames interaction: literature overview and state of the art of macromodeling approach. European Journal of Environmental and Civil Engineering, 19(9), 1059-1095.
El-Dakhakhni, W. W., Hamid, A. A., & Elgaaly, M. (2004, August). Strength and Stiffness Prediction of Masonry Infill Panels. In Proceedings of 13th World Conference on Earthquake Engineering (pp. 1-6).
Ezzeldin, M., Wiebe, L., Shedid, M., & El-Dakhakhni, W. (2014). Numerical modelling of reinforced concrete block structural walls under seismic loading. In 9th Int. Masonry Conf.
Filippou, F. C., Bertero, V. V., & Popov, E. P. (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints.
Furtado, A., Rodrigues, H., & Arêde, A. (2015). Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees. International Journal of Advanced Structural Engineering (IJASE), 7(2), 117-127.
Hashemi, S. A. (2007). Seismic evaluation of reinforced concrete buildings including effects of masonry infill walls. University of California, Berkeley.
Http://opensees.berkeley.edu.tw,柏克萊大學地震研究中心。
Kadysiewski, S., & Mosalam, K. M. (2009). Modeling of unreinforced masonry infill walls considering in-plane and out-of-plane interaction (Vol. 70). Berkeley, California, USA: Pacific Earthquake Engineering Research Center.
Liberatore, L., & Decanini, L. D. (2011). Effect of infills on the seismic response of high-rise RC buildings designed as bare according to Eurocode 8. Ingegneria Sismica, 3, 7-23.
Liberatore, L., Noto, F., Mollaioli, F., & Franchin, P. (2018). In-plane response of masonry infill walls: Comprehensive experimentally-based equivalent strut model for deterministic and probabilistic analysis. Engineering Structures, 167, 533-548.
Mehrabi, A. B., Benson Shing, P., Schuller, M. P., & Noland, J. L. (1996). Experimental evaluation of masonry-infilled RC frames. Journal of Structural engineering, 122(3), 228-237.
Mohyeddin, A., Dorji, S., Gad, E. F., & Goldsworthy, H. M. (2017). Inherent limitations and alternative to conventional equivalent strut models for masonry infill-frames. Engineering Structures, 141, 666-675.
Mohyeddin, A., Goldsworthy, H. M., Gad, E. F., & Maharjan, S. (2014). FE analysis of RC frames with and without masonry infill panels. In Australian Earthquake Engineering Society 2014 Conference.
Mosalam, K. M., & Günay, M. S. (2012). Behavior and modeling of reinforced concrete frames with unreinforced masonry infill walls. Structural engineering and geomechanics. Oxford, UK: Encyclopedia of Life Support Systems (EOLSS), Developed under the auspices of the UNESCO, EOLSS Publishers. Retrieved February, 19, 2013.
Mosalam, K. M., & Günay, S. (2015). Progressive collapse analysis of reinforced concrete frames with unreinforced masonry infill walls considering in-plane/out-of-plane interaction. Earthquake Spectra, 31(2), 921-943.
Nicola, T., Leandro, C., Guido, C., & Enrico, S. (2015). Masonry infilled frame structures: state-of-the-art review of numerical modelling. Earthquakes and structures, 8(3), 731-757.
Noh, N. M., Liberatore, L., Mollaioli, F., & Tesfamariam, S. (2017). Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees. Engineering Structures, 150, 599-621.
Panagiotakos, T. B., & Fardis, M. N. (1996, June). Seismic response of infilled RC frames structures. In 11th World Conference on Earthquake Engineering (No. 225).
Samoilă, D. (2013). ’Masonry infill panels-analytical modeling and seismic behavior ‘.
Saneinejad, A., & Hobbs, B. (1995). Inelastic design of infilled frames. Journal of Structural Engineering, 121(4), 634-650.
Smyrou, E., Blandon, C., Antoniou, S., Pinho, R., & Crisafulli, F. (2011). Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering, 9(5), 1519-1534.
Stavridis, A. (2009). Analytical and experimental study of seismic performance of reinforced concrete frames infilled with masonry walls (Doctoral dissertation, UC San Diego).
Yáñez, F., Astroza, M., Holmberg, A., & Ogaz, O. (2004, August). Behavior of confined masonry shear walls with large openings. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper (No. 3438).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw