進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1807201910274800
論文名稱(中文) 非破壞性檢測法應用在地下遺址及構造物檢傷之研究
論文名稱(英文) Investigating the Detection of Subsurface Ruins and Structure Defects using NDT
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳亮宇
研究生(英文) Linag-Yu Chen
學號 N66061430
學位類別 碩士
語文別 中文
論文頁數 195頁
口試委員 指導教授-吳建宏
共同指導教授-李德河
口試委員-周允文
口試委員-楊智堯
口試委員-談宜芳
口試委員-張舜孔
中文關鍵字 非破壞檢測  透地雷達  地電阻  地下基礎探測  淘空  滲流  水庫 
英文關鍵字 Non-destructive testing  Ground Penetrating Radar  Underground foundation detection  Resistivity Image Profiling  Seepage  Reservoir 
學科別分類
中文摘要 在進行區域更新時多會採用新建或改建構造物,若過程中遭遇文化遺跡時,必將造成工程停止、工程延宕,使建造者、施工者受到損失,此外,現今構造物常因地下水流的影響造成掏空,影響構造物的安全,如何判定掏空位置以及都會區進行地下工程時可能會遭遇地下管線甚至是地下文化遺址如何避免誤掘,若使用非破壞性檢測的調查應用可對其有所幫助。本研究在不同案例中嘗試結合透地雷達及地電阻等非破壞性檢測並與測區之文獻紀錄等進行綜合評估其所得結果,其中地下遺址探測部分包括原為臺澎兵備道的台南市某國小與位於台鐵鐵路旁邊之台灣府城東門段城垣遺跡,以及構造物檢傷探測部分包括基礎底部地層疑似有掏空現象的台中市西屯區某食品加工廠與需進行土堤結構安全性檢測的屏東縣某水庫。
遺跡之定位是先由透地雷達進行探測,確定在透地雷達影像圖中呈現出之遺跡圖徵,依此圖徵確定其他遺跡的位置,顯示透地雷達對遺跡定位之能力;此外掏空位置確認以及土堤結構確認是先由透地雷達與地電阻兩種不同之非破壞性檢測進行探測,而後再將兩者之成果進行比對,以此確定掏空之位置以及土堤結構之樣貌,顯示出兩種非破壞性檢測對地下之地層狀況、地下滲流之方向以及大致位置的了解皆可適用,同時也作為往後相關研究之參考依據。
英文摘要 Investigating the Detection of Subsurface Ruins and Structure Defects using NDT
(Extended Abstract)

Chen, Liang-Yu
Wu, Jian-Hong & Lee, Der-Her
Department of Civil Engineering, National Cheng Kung University

SUMMARY

Generally, non-destructive testing is detected by a single method. The professional experience of the experts and the limitation of the instrument often govern the accuracy of the detection results. In this case, the study attempted to combine Ground Penetrating Radar and Resistivity Image Profiling with the literature records of the survey area. In this way, except for the applicability of mutual verification non-destructive testing, the better credibility detection method is summarized in parallel, and it is also used as a reference for future related research.
This research can be broadly divided into two parts: underground ruins detection and structural damage detection. The underground ruins detection includes Tainan City Elementary School with the underground ruins in the Qing Dynasty, and the Dongmen section ruins of the Taiwanese city next to the Taiwan Railway. The structure damage detection part includes the Taichung City food processing plant suspected of having a hollowing out phenomenon in the base bottom and the Pingtung County Reservoir where the earth embankment structure needs to be tested the safety.
The ruins' location is to use Ground Penetrating Radar to detect, then determine the ruins' signs in Ground Penetrating Radar image map and determine the other ruins' location according to the signs. Using the Ground Penetrating Radar and Resistivity Image Profiling confirm hollow position and the earth embankment structure, and compared the results to determine the hollow position and the earth embankment structure, show non-destructive testing for the formation condition, the understanding of the underground seepage direction and the approximate location can be applied, and it's also used as a reference for future research.
Keyword:
Non-destructive testing, Ground Penetrating Radar, Underground foundation detection, Resistivity Image Profiling, Seepage, Reservoir.

INTRODUCTION

First, the study integrates the collected non-destructive testing literature and applies it to field detection. The results of the analysis will be used in the following situations:
(1) Tainan City Elementary School with underground ruins in the Qing Dynasty;
(2) Ruins of the Dongmen section of Tainan City;
(3) Taichung Food Processing Factory;
(4) Pingtung County Reservoir
This content of this thesis covers,
Chapter 2: Literature survey of NDT
Chapter 3: Introduction of the NDT instrument used, theoretical formulas and relevant parameters
Chapter 4: Detection route planning and detection results of NDT in actual conditions
Chapter 5: Conclusion and suggestion

MATERIALS AND METHODS

Ground Penetrating Radar (GPR) mainly uses the electromagnetic wave emitted by the coil in the antenna to detect the position of the object through the reflected wave signal caused by the difference in the dielectric constant of different materials in the underground, and then analyzes it by using software (Radan7). The frequency of the radar wave can be adjusted with the antenna. The high-frequency antenna has a shallow depth of detection, but the resolution is high. The low-frequency antenna has a deep depth of detection and a low resolution.
Resistivity Image Profiling (RIP) is mainly used to introduce a pair of electrodes from the detection point as a current pole into the surface of the earth by a direct current. When the current flows through the formation, an artificial electric field is established, and then another pair of electrodes is used. The potential difference (V) and current intensity (I) of the potential electric field are measured. However, the data after the measurement is the apparent resistivity before being processed. The true resistivity needs to be stimulated by the positive calculation model before the simulation. Perform an inversion calculation analysis. When the electrode is applied, the distance between the electrodes will affect the analytical ability and the depth of exploration of the profile imaging. The smaller the spacing, the better the resolution, but the depth of detection is also shallow.

RESULTS AND DISCUSSION
In the first case, carried out excavation is after the third survey. The survey results are shown in Fig.1, and the excavation results are shown in Fig. 2. The excavation results are compared with the survey results. It can be found that the high similarity between the two results. There are two complete ruins on the north side of the excavation. In addition, the south side has a continuous foundation and gradually moves northward. Therefore, it can be seen that the Ground Penetration Radar has good applicability in the detection of the ruins and has considerable precision.

Figure.1 The survey results

Figure.2 The excavation results
In the third case, the survey is divided into 5 zones according to the survey line distribution as shown in Fig.3. the soil layer with high water content is suspected in the test area or the location of the groundwater seepage channel is densely distributed in the A zone southern half, the B zone west side, the C zone south side and the north side, and the E zone. Also, suspected the soil layer is a strong affected disturbance or grouting position, located on the B zone east side, the C zone north side and the south side, the A zone middle section to the south section and the E zone. Through the detection, compared the places with strong disturbance or stratum grouting and the places suspected of The high water content or the underground seepage channel location. it can be found the location is high similarity, it is suspected maybe the groundwater seepage concentration area. The two non-destructive test results are roughly the same, shown in Fig.4, and the reflections are stronger when the resistance value is higher, so it can be known that the resistance value is positively correlated with the reflected wave.

Figure.3 survey result

Figure.4 Compared with GPR and RIP

CONCLUSION

1. Using Ground Penetrating Radar to survey and to verify the excavation in Tainan City Elementary School. The survey results are quite similar to the test results, shows the applicability of the Ground Penetrating Radar to the ruins survey is good.

2. In the survey of ruins, the two sites have been destroyed and their structures are not complete. The obtained signs have broken and discontinuous, which must be assisted by literature and site data to make the results of a more powerful explanation.

3. According to two non-destructive testing in the Taichung Food Processing Plant, the two NDT results are high similarly and showed it can be applied to the condition of the underground stratum, the direction of underground seepage and the approximate location Understanding.

4. The RIP can be measured to be deeper than the GPR, but the resolution is that the GPR has higher RIP. Therefore, different detection methods can be selected according to the target size and the survey depth, such as hollowing out, seepage, etc. A large-area or deep-depth survey can be used by RIP. If the depth of the underground pipeline or site is shallow or the range is small, it can select the higher resolution GPR.
論文目次 摘要 I
誌謝 VIII
目錄 IX
圖目錄 XII
表目錄 XVIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與方法 2
1-3 研究流程 3
1-4 研究大綱 5
第二章 文獻回顧 6
2-1 非破壞檢測定義 6
2-2 透地雷達之探測原理及應用範圍 8
2-3 透地雷達之探測應用 11
2-3-1 地下遺址調查 11
2-3-2 掏空及孔洞調查 18
2-4 地電阻影像法之探測原理及應用範圍 23
2-5 地電阻影像法之探測應用 25
2-5-1電極於不同排列下之解析度 25
2-5-2地質之導電度與電阻率 28
2-5-3室內滲透試驗 30
2-5-4洞穴研究案例 32
2-5-5地下空洞研究案例 34
第三章 非破壞檢測之基本理論與儀器介紹 36
3-1 透地雷達儀器及原理介紹 36
3-1-1 透地雷達儀器介紹 36
3-1-2透地雷達探測流程 43
3-1-3透地雷達基本理論 49
3-1-4材料之電磁特性 51
3-1-5透地雷達之探測深度概算法 54
3-1-6透地雷達之解析度 56
3-1-7資料分析 60
3-1-8透地雷達圖徵判釋 63
3-2 地電阻影像法儀器及原理介紹 67
3-2-1 地電阻影像儀器介紹 67
3-2-2 野外施測流程及其原理 74
3-2-3 地電阻影像剖面法基本原理 75
3-2-4 均質與非均質中的電阻率與電流流線 81
3-2-5 電極之各種排列方式及原理 86
3-2-6分析軟體及正、反演算原理 90
3-2-7資料修正設定 93
第四章 現地探測結果 96
4-1 台南市某國小疑似清代遺構 96
4-1-1 研究區域介紹 97
4-1-2 非破壞性檢測之測線規劃與施作 98
4-1-3 非破壞性檢測之分析結果 101
4-2 台灣府城東門段城垣遺跡 110
4-2-1 研究區域介紹 111
4-2-2 非破壞性檢測之測線規劃與施作 112
4-2-3 非破壞性檢測之分析結果 116
4-3 台中某食品加工廠地基掏空檢測 125
4-3-1 研究區域介紹 127
4-3-2 非破壞性檢測之測線規劃與施作 128
4-3-3 非破壞性檢測分析結果 132
4-4 屏東某水庫土堤結構安全檢測 140
4-4-1 研究區域介紹 140
4-4-2 非破壞性檢測之測線規劃與施作 142
4-4-3 非破壞性檢測分析結果 146
第五章 結論與建議 151
5-1 結論 151
5-2 建議 152
參考文獻 154
附錄一、現地探測透地雷達探測資料 160
附錄A-台南某國小完整測線圖 160
附錄B-台灣府城東門段城垣遺跡完整測線圖 167
附錄C-台中某食品加工廠完整測線圖 172
附錄D-屏東某水庫完整測線圖 189
參考文獻 1. 中央研究院人文社會科學研究中心,「台南市百年歷史地圖疊合系統」,「http://gissrv4.sinica.edu.tw/gis/tainan.aspx」,2019。
2. 中華大學土木工程學系 / 結構安全評估與非破壞性檢測實驗室,「http://web.chu.edu.tw/~ccw/」,2019。
3. 全國法規資料庫,「https://law.moj.gov.tw/LawClass/LawAll.aspx?
PCode=H0170001」,2019。
4. 王惠濂,「探地雷達目的體物理模擬研究結果」,中國地質大學學報,第18卷,第3期,266-284頁,1993。
5. 江俊松,「圓管壓力容器之非破壞性檢測」,國立清華大學動力機械工程研究所博士論文,新竹,2002。
6. 祁松明,「地質雷達在隧道內的探測」,地球科學-中國地質大學學報,第18卷,第3期,第352-357頁,1993。
7. 吳啟誠,「非破壞性檢測法適用性之研究」,國立臺灣海洋大學河海工程研究所碩士論文,基隆,2011。
8. 范勝雄,「府城叢談•府城文獻研究(1)」,日月出版社,台南,1997。
9. 范勝雄,「府城叢談•府城文獻研究(3)」,日月出版社,台南,1997。
10. 范勝雄,「府城叢談•府城文獻研究(4)」,日月出版社,台南,1997。
11. 周翰臨,「非貫入式電極改善地電阻法探測地下管線與地層之研究」,國立成功大學土木工程研究所碩士論文,台南,2014。
12. 段偉宗,「併合二維、三維地電阻影像法及透地雷達法應用於管線及估計電石渣總量上之研究」,國地中央大學地球物理研究所碩士論文,桃園,2000。
13. 財團法人台灣非破壞性檢測協會,「http://www.sntct.org.tw/whatisntd.php」,2019。
14. 姚奕全,「應用地電阻法於崩積層含水特性調查與監測之初探」,國立交通大學土木工程研究所碩士論文,新竹,2007。
15. 夏語堯,「透地雷達應用於地下古蹟調查及判釋」,國立成功大學土木工程研究所碩士論文,台南,2018。
16. 曹正宇,「併合地球物理法在斷層及管線之研究」,國立中央大學地球物理研究所碩士論文,桃園,1997。
17. 國際文化紀念物與歷史場所委員會ICOMOS官方網站,「http://www.icomos.org/en/」,2017。
18. 陳力齊,「應用地電阻影像法探測敦基深度之初步研究」,國立成功大學土木工程研究所碩士論文,台南,2009。
19. 陳澤承,「由波速的量測改善透地雷達應用於古蹟遺址探測之效益」,國立成功大學土木工程研究所碩士論文,台南,2013。
20. 陳彥璋、葉惠中、高蘇白、陳彥霖,「以透地雷達量測河川斷面」,農業工程學報,第58卷,第2期,13-21頁,2012。
21. 張君仰,「透地雷達於古蹟探測之應用」,國立成功大學土木工程研究所碩士論文,台南,2004。
22. 黃純夫,「非破壞檢測儀具設備概述」,科儀產品新知(1~3),第48-52頁(1983)。
23. 董彥閔,「地電阻影像法於古蹟遺址探測與大地環境應用之研究」,國立成功大學土木工程研究所碩士論文,台南,2011。
24. 劉大魁,「GPR與熱影像技術於大地工程之應用研究」,國立成功大學土木研究所碩士論文,台南,2002。
25. 賴新龍,「非破壞檢測技術應用於淺層地工構造物之調查」,國立成功大學土木工程研究所博士論文,台南,2013。
26. 經濟部中央地質調查所活動斷層教學區,「http://fault.moeacgs.gov.tw/TaiwanFaults_2009/Default.aspx」,2019。
27. 羅經書,「透地雷達應用於管線與地層調查之研究」國立成功大學土木工程研究所碩士論文,台南,1998。
28. ASTM, “E1316-13c” Standard Terminology for Nondestructive Examinations, 1989.
29. Bracewell, R., The Fourier Transform & Its Applications, 3rd Edition, McGraw-Hill College, U.S.A., 2000.
30. Burger, R.H., Exploration Geophysics of the Shallow Subsurface, Prentice Hall, Houston, TX, U.S.A., 1992.
31. Clarebout, J.F., and Muir, F., “Robust modeling with erratic data,” Geophysics, Vol.38, No.5, pp.826-844, 1973.
32. Constable, S.C., Parker, R.L., and Constable, C.G., “Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data,” Geophysics, Vol.52, No.3, pp.289-300, 1987.
33. Constantin Ungureanu, Adrian Priceputu, Adrian Liviu Bugea, Anton Chirică, “Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites,” Procedia Engineering, Vol.209, pp.202-209, 2017.
34. Dahlin, T., and Zhou, B., “A numerical comparison of 2D resistivity imaging with 10 electrode arrays,” Geophysical, Vol. 52, pp.379-398, 2004.
35. Davis, J.L., and Annan, A.P., “Ground Penetrating Radar for High Resolution Mapping of Soil and Rock Stratigraphy” Geophysical Prospecting, Vol.37, pp.531-551, 1989.
36. deGroot-Headlin, C., and Constable, S., “Occam’s inversion to generate smooth two-dimensional models from magneto telluric data,” Geophysics, Vol.55,No.12, pp.1613-1624, 1990.
37. Dimitrios Angelis, Panagiotis Tsourlos, Gregory Tsokas, George Vargemezis, Georgia Zacharopoulou, and Christopher Power, “Combined application of GPR and ERT for the assessment of a wall structure at the Heptapyrgion fortress (Thessaloniki, Greece),” Applied Geophysics, Vol.152, pp.208-220, 2018.
38. Edwards, L.S., “A modified pseudo-section for resistivity and induced polarization,” Geophysics, Vol.42, No.5, 99.1020-1036, 1977.
39. Geophysical Survey Systems Inc., SIR System-20 User's Manual, USA, 2002.
40. Geophysical Survey Systems Inc., SIR System-20 User's Manual, USA, pp.1-51, 2014a.
41. Geophysical Survey Systems Inc., RADAN for Windows Version7 user’s Manual, USA, pp.1-176, 2014b.
42. Google 衛星地圖,「https://www.google.com.tw/maps?hl=zh-TW」,2019。
43. Magdy F. Iskander, Electromagnetic Fields and Waves, Prentice Hall, U.S.A., 1992.
44. Hubbert, M.K., “The theory of ground-water motion,” Journal of Geology, Vol.48, No.8, pp.785-994, 1940.
45. Inman J.R., “Resistivity inversion with ridge regression,” Geophysics, Vol.40, No.5, pp.798-817, 1975.
46. Kearey, P., and Brooks, M., “An introduction to geophysical exploration,” Scientific Publications, Osney Mead, Oxford, p296, 1984.
47. Lines, L.R., and Treitel, S., “A review of least-squares inversion and its application to geophysical problems,” Geophysical Prospecting, Vol.32, pp.159-186, 1984.
48. Loke, M.H., and Barker, B.D., “Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method,” Geophysical Prospecting, Vol.44, pp.131-152, 1996.
49. Loke, M.H., Acworth, I., and Dahlin, T., “A comparison of smooth and blocky inversion method in 2D electrical imaging surveys,” Exploration Geophysics, Vol.34, No.3, pp.182-187, 2002.
50. Loke, M.H., “Tutorial:2-D and 3-D electrical imaging surveys,” Geotomo Software, Malaysia, pp.11-17, 2003.
51. Klein, K. and Santamarina, J.C., “Electrical conductivity in soil: underlying phenomena,” Journal of Environmental and Engineering Geophysics, Vol.8, No.4, pp.263-273, 2003.
52. Maijala, P., “Application of some seismic data processing methods to ground penetrating radar data,” Geological Survey of Finland, pp.133-138, 1992.
53. Milan Beres, Jr., and Haeni, F.P., “Application of ground penetrating radar methods in hydrogeologic studies,” Ground Water, Vol.29, No.3, pp. 375-386, 1991.
54. Pánek, T., Margielewski, W., Tábořík, P., Urban, J., Hradecký, J., and Szura, C., “Gravitationally induced caves andother discontinuities detected by 2D electrical resistivity tomography: Case studies from the Polish Flysch,” Carpathians. Geomorphology, Vol.123, No.1-2, pp.165-180, 2010.
55. Perez-Gracia, V., Gonzalez-Drigo, R. and Sala, R., “Ground-penetrating radar resolution in cultural heritage applications,” Near Surface Geophysics, 10(1), pp.77 – 87, 2015.
56. Sauer, M.C., Southwick, P.F., Spiegler, K.S., and Wyllie, M.R.J., “Electrical conductance of porous plugs ion exchange resin-solution system,” Industrial and engineering chemistry, Vol. 47, No. 10, pp.2187-2193, 1995.
57. Sheriff, R.E.,and Geldert, L.P., Exploration Seismology, Cambridge University Press, New York, USA, 1982.
58. Skolnick, M.I., Introduction to Radar Systems, McGraw-Hill, 1980.
59. Taner, M.T., Koehler, F., and Sheriff, R.E., "Complex seismic trace analysis, " Geophysics, Vol. 44, No. 6, pp.1041-1063, 1979.
60. Telford, W.M., Geldart, L.P. and Sheriff, R.E., Applied Geophysics, Cambridge University Press, 1990.
61. Van Nostrand, R.G. and Cook, K.L., Interpretation of Resistivity Data, United States Government Printing Office, Washington, 1966.
62. Wolke, R., and Schwetlick, H., “Iteratively reweighted least squares algorithms, convergence analysis, and numerical comparisoms,” SIAM journal on scientific and statistical computing, Vol.9, No.5, pp.-907-921, 1988.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw