進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1807201615034000
論文名稱(中文) 鎳銅鋅鐵氧磁體生胚薄帶製作高深徑比微流道所需之材料及製程研究
論文名稱(英文) A study on the materials and processes to manufacture micro patterns with high aspect ratio on green sheet of NiCuZn ferrites
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 郭文勤
研究生(英文) Wen-Chin Kuo
學號 N46031172
學位類別 碩士
語文別 中文
論文頁數 100頁
口試委員 指導教授-向性一
口試委員-吳毓純
口試委員-曾文甲
中文關鍵字 燒結氣氛  冷卻氣氛  鎳銅鋅鐵氧磁體  銅析出  磁性質  熱壓印  生胚陶瓷薄帶  玻璃轉化溫度  外加壓力  生胚薄帶厚度 
英文關鍵字 sintering atmosphere  NiCuZn ferrites  copper-rich phase  segregation  magnetic properties  hot embossing  green sheet 
學科別分類
中文摘要 由於積體電路之操作電壓不斷往低壓化發展,且使用之電流量亦隨之增大,進而使得直流電源轉換器所使用之電感元件須能承受較大之電流量。為使晶片型電感可在較大電流下操作,首先須使內部導體銀之厚度增厚,以降低直流電阻,進而降低元件之熱損失,但將大幅增高原料之成本。若能將內部之導線材料由貴金屬銀轉換為卑金屬銅,將可降低其製作成本。而NiCuZn鐵氧磁體與內電極銅共燒時,為避免銅氧化需在還原或惰性氣氛下燒結,因此不同燒結及冷卻氣氛對鎳銅鋅鐵氧磁體顯微結構、磁性質、直流疊加特性影響,成了重要之研究課題。本研究探討在不同燒結及冷卻氣氛(N2-N2;N2-Air;Air-Air)對鎳銅鋅鐵氧磁體(化學組成為Ni0.42Cu0.25Zn0.37Fe2O4)顯微結構、電磁性質之影響。以了解在還原氣氛下燒結鎳銅鋅鐵氧磁體,製作晶片型電感之可能性。發現可藉由控制燒結及冷卻氣氛使晶界上產生富銅相的析出物,並影響Cu離子和Fe離子所在的晶格位置,進而影響鎳銅鋅鐵氧磁體之電磁性質及直流疊加特性。
然而傳統積層電感製作過程複雜,且隨著內部導體之厚度增加,更需考慮到線路間隙等問題,故本研究利用熱壓印製程於陶瓷生胚薄帶上製作高深徑比微線路,並探討有機載體配方、外加壓力、操作溫度及生胚薄帶厚度對於微線路解析度之影響。結果發現當生胚薄帶具有較高的剛性、較低的應變及足夠之生胚薄帶厚度時,可在生胚薄帶上得到高解析度之高深徑比微線路,且微線路周圍無裂紋生成。
本研究成功研發出以熱壓印製程製作高解析度之高深徑比微線路結構之技術,並順利將內部電極金屬銅以網版印刷技術填入微線路結構內,改善傳統積層電感複雜的製作過程。
英文摘要 The operating voltages of integrated circuits have become lower, accompanied with an increase in the working current. Therefore, the power chip inductor in DC-DC converter has to endure higher current. To operate power chip inductor under a higher current, the thickness of inner electrodes must be increased to reduce the direct current resistance (Rdc), thereby reducing the increase in temperature during operation. If the inner electrode for multilayer power chip inductors could be substituted using base metal, copper, the production cost will be significantly reduced. In order to avoid oxidation copper must be sintered under a reducing or inert atmosphere. This study investigated the different sintering atmospheres effects on the magnetic properties, electric properties and microstructure of NiCuZn ferrites to understand the potential of manufacturing chip inductor sintered under a reducing or inert atmosphere. The results show that the copper-rich phase was observed to be segregated during sintering near the grain boundaries. The amount of segregated copper-rich precipitates depends strongly on the sintering conditions. The magnetic properties depend strongly on the non-magnetic copper-rich precipitate thickness at the grain boundaries and the occupation of lattice sites by Cu and Fe ions.
Due to the traditional multilayer power inductor manufacturing process is very complicated, this study tries to use hot-embossing process to manufacture micro patterns with high aspect ratio on NiCuZn ferrites green sheets to simplify the process. Moreover, the effects of the compositions of the organic vehicle, hot-embossing temperature, pressure and the thickness of ceramic green sheet on the resolution of the micro-channels on the ceramic green sheet were investigated. The results showed that embossed micro patterns with high resolution and without cracks on the green sheets can be obtained by using the green sheets with a higher stiffness, lower fracture strain and higher thickness.
論文目次 摘要 I
致謝 IX
目錄 X
表目錄 XIV
圖目錄 XV
第一章、緒論 1
1-1前言 1
1-2研究目的 2
第二章、前人研究 4
2-1積層電感之特性與製程 4
2-1.1電感之介紹 4
2-1.2積層電感製程 5
2-2電感材料-鐵氧磁體 9
2-2.1尖晶石鐵氧磁體結構 10
2-2.2鋅鐵氧磁體 12
2-2.3鎳銅鋅鐵氧磁體之成分比例影響特性 15
2-3鐵氧磁體之偏析行為 18
2-4鐵氧磁體之磁性質 19
2-4.1初導磁係數 20
2-4.2磁損失 21
2-4.3磁異向性 22
2-4.4磁滯曲線 24
2-5 刮刀成型法 (TAPE CASTING) 25
2-5.1陶瓷薄帶添加物 26
2-5.1.1陶瓷粉末 26
2-5.1.2有機載體添加物 26
2-6 網印技術 30
2-7熱壓成型 30
2-7.1熱壓印製程成型種類 31
2-7.2熱壓印製程於陶瓷薄帶之應用 36
2-8玻璃轉換溫度 (GLASS TRANSITION TEMPERATURE) 37
第三章、實驗方法 39
3-1不同燒結、冷卻氣氛與不同燒結溫度對鐵氧磁體之顯微結構及電磁性質之影響 39
3-1.1實驗藥品 40
3-1.2樣品製備及燒結 40
3-1.3材料特性分析 40
3-1.3.1熱收縮分析 40
3-1.3.2密度量測 41
3-1.3.3相鑑定 41
3-1.3.4顯微結構分析 41
3-1.3.5磁性分析 42
3-1.3.6 X射線光電子能譜分析 42
3-1.3.7電性分析 42
3-2有機載體配方對陶瓷生胚薄帶應用於熱壓印製程製作高深徑比微線路解析度之影響 43
3-2.1實驗藥品 44
3-2.2薄帶製備 44
3-2.2.1沉降試驗 44
3-2.2.2漿料製備 44
3-2.2.3刮刀成型 45
3-2.3熱壓印 (Hot-Embossing) 45
3-2.3.1熱壓印模具製作 45
3-2.3.2 Hot-Embossing 46
3-2.4網版印刷 46
3-2.5材料特性分析 46
3-2.5.1流變行為量測 46
3-2.5.2熱機械性質試驗 47
3-2.5.3表面輪廓觀察 47
3-2.5.4表面形貌觀察 47
3-2.5.5 SEM顯微結構觀察 48
第四章、結果與討論 49
4-1不同燒結、冷卻氣氛與不同燒結溫度對鐵氧磁體之顯微結構及電磁性質之影響 49
4-1.1熱收縮行為分析 49
4-1.2體密度分析 50
4-1.3相鑑定 50
4-1.4顯微結構分析 51
4-1.5磁滯曲線分析 58
4-1.6導磁係數分析 61
4-1.7直流疊加特性分析 62
4-1.8直流電阻量測 63
4-1.9 XPS離子價數分析 66
4-2有機載體配方對陶瓷生胚薄帶應用於熱壓印製程製作高深徑比微線路解析度之影響 70
4-2.1沉降試驗 70
4-2.2流變行為量測 70
4-2.3熱機械性質分析 71
4-2.4熱壓印製程(Hot Embossing) 77
4-2.4.1外加壓力之影響 77
4-2.4.2溫度之影響 82
4-2.4.3生胚薄帶厚度之影響 86
4-2.5顯微結構分析 90
第五章、結論 92
5-1不同燒結、冷卻氣氛與不同燒結溫度對鐵氧磁體之顯微結構及電磁性質之影響 92
5-2有機載體配方對陶瓷生胚薄帶應用於熱壓印製程製作高深徑比微線路解析度之影響 93
參考文獻 95
參考文獻 [1.] 柯文雄,「晶片型電子陶瓷材料及元件技術」,工業技術研究院,1993.
[2.] 呂秉軍,「離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響」,國立成功大學資源工程所,碩士論文,2012.
[3.] TDK, “High-Precision Multilayering Technology Combines Small Size an High-Q Rating,” Tech Journal, 2011.
[4.] 姚壬謙,「化學共沉法製備 Co2Z 鐵氧磁體粉末之生成機構研究」,國立成功大學資源工程所,碩士論文,2004.
[5.] 王志方,「 LTCC 產業概況」,IBT 台灣工商銀行研究中心,2008.
[6.] M. D. Kingery, H. K. Bowen , D.R. Uhlmann, “Introduction to ceramics,” 2nd Edition, John Wiley & Sons, New York, 1976.
[7.] 金重勳,「磁性技術手冊」,中華民國磁性技術協會,2002.
[8.] J. H. Jean and C. H. Lee, “Low-fire NiO-CuO-ZnO Ferrite with Bi2O3,” Jpn. J. Appl. Phys. vol. 38, pp. 3508–3512, 1999.
[9.] 山口橋、柳田博明、岡本祥一、近桂一郎、黃忠良,「磁性陶瓷」,復漢出版社,2001.
[10.] 劉向春,「ZnO-TiO2系介電陶瓷/NiCuZn鐵氧磁體疊層低溫共燒兼容特性研究」,西北工業大學,博士論文,2006.
[11.] Alex Goldman, “Modern ferrite technology, ” Spring, NY ,2006.
[12.] C. Guillaund, J. Phys. Rad., 12 239, 1951.
[13.] Raul Valenzuela, “Magnetic ceramics,” Cambridge University Press, NY, 1994.
[14.] 陳皇均,「陶瓷材料概論下」,曉園出版社,1992.
[15.] J. H. Nam, H. H. Jung, J. Y. Shin, et al, “The effect of Cu substitution on the electrical and magnetic properties of NiZn ferries,” IEEE. Trans. Magn., vol. 31, pp.3985-3987, 1995.
[16.] 楊朝偉,「巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留」,國立成功大學材料科學及工程研究所,碩士論文,2006.
[17.] 李廷濬,「氧化鉛-氧化銅玻璃添加劑對Co2Z 六方晶系鐵氧磁體燒結及磁性質影響之研究」,義守大學材料科學與工程研究所,碩士論文,2004.
[18.] ] S. H. Gee, Y. K. Hong, I. T. Nam, C. Weatherspoon, A. Lyle, and J. C. Sur,“Ba3Co0.8Zn1.2Fe24O41 (Co2Z-Type) Hexaferrite Particles for LTCC Substrates, ” IEEE Trans. Magn.,vol. 42, pp. 2843-2845, 2006.
[19.] X.H. Wang, T.L. Ren, L.T. Li, Z.L. Gui, S.Y. Su, Z.X. Yue, and J. Zhou,“Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrateprecursor mothod, ” J. Magn. Magn. Mater., vol. 234, pp. 255-260, 2001.
[20.] P. Lubitz, “New substitution in the hexagonal ferrites to reduce anisotropy without using Co, ” J. Appl. Physi., vol. 87, pp. 4978-4980, 2000.
[21.] 鄭振東,「實用磁性材料」,全華科技圖書,pp. 2-24~2-28.
[22.] 康閎竣,「超薄Co膜成長於Pt(111)之表面與磁性的研究」,國立中山大學物理研究所,碩士論文,2007.
[23.] K. Majima, M Hasegawa, M. Yokota, S. Mishima, H. Nagai., “Microstructural Control of Ni–Zn Ferrites for Thin Film Heads,” Materials Transactions, JIM, vol. 34, pp. 556-562, 1993.
[24.] K. Majima, M. Hasegawa, S. Katsuyama, S. Mishima, H. Nagai, “Influence of Composition and Oxygen Partial Pressure in Sintering Atmosphere on Microstructure and Magnetic Properties of Ni–Zn Ferrite for Thin Film Magnetic Recording Heads,” Materials Transactions, JIM, vol. 36, pp. 1392-1397, 1995.
[25.] K. Majima, M. Hasegawa, S. Katsuyama, H. Nagai, S. Mishima “ZnO precipitation during sintering of Ni-Zn ferrite used for the substrate of thin-film heads, ” Journal of Materials Science Letters, vol.12, pp 185-187, 1993.
[26.] 邱繼洋,「添加銀之氧化物電極搭配鋯鈦錳鈮酸鉛壓電陶瓷微結構與電性之研究」,國立台灣科技大學,碩士論文,2003.
[27.] Li, S., et al., “Fabrication and characterization of Li1+x-yNb1-x-3yTix+4yO3 substrates using aqueous tape casting process,” Ceramics International, vol. 35(1), pp. 421-426, 2009.
[28.] McNulty, T.F., V.F. Janas, and A. Safari, “Multilayered Multifunctional Ceramic Materials by Tape Casting,“ Applications of Ferroelectrics, ISAF '96. Proceedings of the Tenth IEEE International Symp.,vol. 2, pp. 755-758, 1996.
[29.] Richard E. Mistler, “Tape casting:The basic process for meeting the needs of the electronics industry,” Am. Ceram. Soc. Bull. , vol. 69, pp. 1022-1026, 1990.
[30.] 汪建民,「陶瓷技術手冊」,中華民國粉末冶金學會,1994.
[31.] Dang-Hyok Yoon, Burtrand I Lee, “Processing of barium titanate tapes with different binders for MLCC applications—Part I:Optimization using design of experiments,” J. Eur. Ceram. Soc., vol. 24, pp. 753–761, 2004.
[32.] Kyung Yul Lim, Dae Hwan Kim, Ungyu Paik a, Seong Hun Kim, “Effect of the molecular weight of poly (ethylene glycol) on the plasticization of green sheets composed of ultrafine BaTiO3 particles and poly(vinyl butyral),” Mater. Res. Bull., vol. 38, pp. 1021–1032, 2003.
[33.] Dang-HyokYoon, Burtrand I. Lee, “Processing of barium titanate tapes with different binders for MLCC applications—Part II:Comparison of the properties, ” J. Eur. Ceram. Soc. , vol. 24, pp. 753–761, 2004.
[34.] 高濂、孫靜、劉陽橋,「奈米粉體的分散及表面改性」,五南圖書出版,2005.
[35.] Ungyu Paik , Vincent A. Hackley , Sung -Churl Choi , Yeon-Gil Jung, “The effect of electrostatic repulsive forces on the stability of BaTiO3 particles suspended in non-aqueous media,” Colloids Surf., A:Physicochemical and Engineering Aspects, vol. 135, pp. 77-88, 1998.
[36.] James S.Reed, “Principles of Ceramics Processing,” John Wiley&Sons, 1994.
[37.] M.Kemr, H.Mizuhara, “Flexible ceramic tape and method of making same,” US Patent No. 4329271, 1982.
[38.] K.Kita, J.Fukuda, H.Ohmur, “Green ceramic tapes and method of producing them,” US Patent No. 4353958, 1982.
[39.] 黃荐苰,「刮刀成型技術製備多層陶瓷元件之微觀與電性研究」,國立臺灣科技大學,碩士論文,2009.
[40.] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V.Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B, vol. 17, pp.2965-2969, 1999.
[41.] R.D. Chien, “Hot embossing of microfluidic platform,” International Communications in Heat and Mass Transfer, vol. 33, pp. 645-653, 2006.
[42.] M.C. Lin, J.P. Yeh, S.C. Chen, R.D. Chien, C.L. Hsu, “Study on the replication accuracy of polymer hot embossed microchannels,” International Communications in Heat and Mass Transfer, vol. 42, pp. 55-61, 2013.
[43.] 楊承桓,「高效率高精度雙面大面積微結構複製技術之研發」,國立臺灣大學,博士論文,2013.
[44.] X. C. Shan, Mohaime B. Mohahidin and Albert C. W. Lu, “Roll-to-Roll (R2R) Hot Embossing for Structuring 3D Microstructures on Polymer Films,” IEEE, pp.568-571, 2012.
[45.] 謝正倫,「滾輪微結構壓印製程開發研究」,國立臺灣大學,碩士論文,2005.
[46.] C.Y. Chang, S.Y. Yang, L.S. Huang, J.H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Physics & Technology, vol. 48, pp.163-173, 2006.
[47.] T.F. Yao, P.H. Wu, T.M. Wu, C.W. Cheng, S.Y. Yang, “Fabrication of anti-reflective structures using hot embossing with a stainless steel template irradiated by femtosecond laser,” Microelectron. Eng., vol. 88,pp. 2908-2912, 2011.
[48.] F.S. Cheng, S.Y. Yang, S.C. Nian, L.A. Wang, “Soft mold and gasbag pressure mechanism for patterning sub-micron patterns onto large concaved substrate,” J. Vac. Sci. Technol. B, vol. 24, pp. 1724-1727, 2006.
[49.] F.S. Cheng, S.C. Nian, “Soft UV-imprinting using gasbag pressure mechanism for side-direction and non-planar substrate,” Adv. Mater. Res., vol. 189-193, pp 4068-4072, 2011.
[50.] Robert F. Gould, “Plasticization and plasticizer prpcesses”, Advances Chemistry Socirty, 1965.
[51.] 徐佩弦,「高聚物流變學及其應用」,化學工業出版社,2003.
[52.] 若文、李谷、馮發才,「高分子物理」,化學工業出版社,2005.
[53.] J. Töpfer, J. Mürbe, A. Angermann, S. Kracunovska, S. Barth, and F. Bechtold, "Soft Ferrite Materials for Multilayer Inductors," Appl. Ceram. Technol, vol. 3, pp. 455-462, 2006.
[54.] H.-I. Hsiang and J.-L. Wu, "Cooling Rate Effects on the Microstructure, Magnetic Properties, and DC Superposition Behavior of NiCuZn Ferrites," Appl. Ceram. Technol, vol. 12, pp. 1065-1070, 2015.
[55.] H.-I. Hsiang and J.-L. Wu, "Copper-rich phase segregation effects on the magnetic properties and DC-bias-superposition characteristic of NiCuZn ferrites," J. Magn. Magn. Mater, vol. 374, pp. 367-371, 2015.
[56.] A. Barba, C. Clausell, J. C. Jarque, and M. Monzó, "ZnO and CuO crystal precipitation in sintering Cu-doped Ni–Zn ferrites. I. Influence of dry relative density and cooling rate," J. Eur. Ceram. Soc, vol. 31, pp. 2119-2128, 2011.
[57.] M. AL-HAJ, "Structural and magnetic properties ofMg0.8−xM0.2NixFe2O4 (M = Zn, Mn) ferrite powders," Turk J Phys, vol. 33, pp. 185 – 192, 2009.
[58.] S.-F. W. Yuh-Ruey Wang "Liquid phase sintering of NiCuZn ferrite and its magnetic properties," Int. J. Inorg. Mater, vol. 3 pp. 1189–1192, 2001.
[59.] K. Sun, Z. Lan, Z. Yu, X. Jiang, and J. Huang, "Phase formation, grain growth and magnetic properties of NiCuZn ferrites," J. Magn. Magn. Mater, vol. 323, pp. 927-932, 2011.
[60.] Tin-Chin Lee, " Effects of PbO-CuO glass on the sintering and magnetic properties of Co2Z hexagonal ferrites," Master, Department of Materials Science and Engineering, I-Shou University, Kaoshiung City, 2002.
[61.] M. T. J. E. G. Visser, "A coherentmodel for the complax permeability in polycrystalline ferrite," IEEE Transactions on Magnetics, vol. 26, pp. 1987 - 1989, 1990.
[62.] Y.-R. W. Sea-Fue Wang, Thomas C.K. Yang, Po-Jeng Wang,Chun-An Lu, "Densication and properties of fluxed sintered NiCuZn ferrites," J. Magn. Magn. Mater, vol. 217, pp. 35-43, 2000.
[63.] Chih-YaoTsai, " Effects of the addition of Co3O4 on the microstructure and electric properties of Cu-Zn-ferrites," Master, Department of Resources Engineering, National Cheng Kung University, 2013.
[64.] Alibeigi, S., Vaezi, M. R., "Phase Transformation of Iron Oxide Nanoparticles by Varying the Molar Ratio of Fe2+:Fe3+," Chem. Eng. Technol, vol. 31, pp. 1591-1596, 2008.
[65.] R. Tholkappiyan, K. Vishista, "Synthesis and characterization of barium zinc ferrite nanoparticles: Working electrode for dye sensitized solar cell applications," Solar Energy, vol. 106, pp. 118-128, 2014.
[66.] Xuechuan Shan, Y. C. Soh, C. W. P. Shi, C. K. Tay and C. W. Lu, "Large Area Roller Embossing of Multilayered Ceramic Green Composites," DTIP of MEMS&MOEMs 9-11 ,2008.
[67.] Xuechuan Shan, S. H. Ling, H. P. Maw, C. W. Lu and Y. C. Lam, " Micro Embossing of Ceramic Green Substrates for Micro Devices," DTIP of MEMS&MOEMs 9-11, 2008.
[68.] G. Wang, E. C. Folk, F. Barlow and A. Elshabini, "Fabrication of microvias for multilayer LTCC substrates," IEEE Transaction on Electmics Packaging Manufacturing, vol. 29, pp. 32-41, 2006.
[69.] G. Hagen and L. Rebenldau, "Fabrication of smallest vias in LTCC Tape," Proc. Electronics System Integration Technology Conference (Dresden Germany), vol. 1, pp. 642-647, 2006.
[70.] H. Becker and U. Heim, " Hot embossing as a method for the fabrication of polymer high aspect ratio structures," Sens. Actuators, A, vol. 83,pp. 130-135, 2000.
[71.] Y. He, J.Z. Fu and Z. Chen, "Research on optimization of the hot embossing process," Micromech. Microeng., vol. 17,pp. 2420-2425, 2007.
[72.] L. J. Guo, "Recent progress in nanoimprint technology and its applications," Phys. Appl. Phys., vol. 37, pp. RI23-RI41, 2004.
[73.] H Bartsch, A Albrecht, M Hoffmann and J M¨ uller, "Microforming process for embossing of LTCC tapes, " J. Micromech. Microeng,vol. 22, 2012.
[74.] Xuechuan Shan , H. P. Maw S. H. Ling Y. C. Lam, "Study on micro hot embossing of low temperature co-firable ceramic green substrates, " Technical Paper,vol. 15,pp. 1225-1232, 2009.
[75.] Y. C. Liu and Xuechuan Shan, "Study of Mechanical Response in Embossing of Ceramic Green Substrate by Micro-Indentation," DTIP of MEMS&MOEMs 9-11, 2008.
[76.] Xuechuan Shan, H.P.Maw, R.T.Tjeung, S.H.Ling, C.W.Lu, R.Jachowicz," Microstructure formation on low temperature co-fired ceramic green substrates using micro embossing," Microsyst Technol, vol. 14, pp. 1405–1409, 2008.
[77.] Torsten Rabe, Petra Kuchenbecker, Baerbel Schulz, " Hot Embossing: An Alternative Method to Produce Cavities in Ceramic Multilayer," Appl. Ceram. Technol.,vol. 4,pp. 38–46, 2007.
[78.] Stefan P. Wilhelm, Robert W. Kay, Mazher I. Mohammed, Yves Lacrotte, Marc P. Y. Desmulliez, " Lamination based embossing technique for LTCC," Microsyst Technol,vol. 19, pp.801-807, 2013.
[79.] 邱碧秀,「電子陶瓷材料」,徐氏基金會,1988.
[80.] Tapan K. Gupta, “Application of Zinc Oxide Varistors,” J. Am. Cerum. Soc., vol. 73, pp.1817-1840, 1990.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw