進階搜尋


下載電子全文  
系統識別號 U0026-1807201610521200
論文名稱(中文) 具銳鈦相TiO2奈米纖維電極之鈣鈦礦太陽能電池-雜質添加及奈米顆粒摻雜之影響
論文名稱(英文) Anatase TiO2 Nanofiber Based Perovskite Solar Cell – Effect of Dopant and Nanoparticle Addition
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 紐潘緹
研究生(英文) Ken Ninez Nurpramesti
學號 NB6037108
學位類別 碩士
語文別 英文
論文頁數 117頁
口試委員 指導教授-丁志明
口試委員-許聯崇
口試委員-陳昭宇
口試委員-蘇彥勳
口試委員-張高硕
中文關鍵字 鉛基鈣鈦礦  二氧化鈦奈米纖維  複合材料  太陽能電池 
英文關鍵字 Lead perovskite  TiO2 nanofiber  Composites  Solar cells 
學科別分類
中文摘要 近幾年來,鈣鈦礦太陽能電池由於直接帶隙,光吸收係數高和載子遷移率高等特性,在光電池應用領域上引起了極大的關注。然而,在二氧化鈦材料中孔層的孔隙填充一直是待挑戰的課題。因此,我們進行了關於二氧化鈦奈米顆粒與奈米纖維之複合材料的研究,此多孔層結構是用作電子傳輸功能,且對孔隙填充的效果會更好。新增優點包括了電子傳輸的改進以及減少電子電洞的重新結合率。在這項研究中,為了改善光學性質和鈣鈦礦太陽能電池的電池性能,我們使用了奈米顆粒與奈米纖維之複合材料,也用了n型摻雜的二氧化鈦作為光電陽極。據我們所知,這是第一次在鉛基鈣鈦礦太陽能電池中使用這種多孔層的研究。鈦系奈米纖維透過不同實驗條件下之電紡絲沉積製造。二氧化鈦奈米纖維特性將使用比表面測定法、紫外線/可見光光譜儀、掃描式/穿透式電子顯微鏡、X-射線繞射分析和X射線光電子 能譜儀進行分析研究。沉積條件對奈米纖維特性的影響我們也進行了研究。最佳化奈米纖維後,我們用商業級的P25二氧化鈦奈米顆粒相混合,利用旋轉塗佈技術已製作出奈米顆粒與奈米纖維的平滑複合膜。至於鈣鈦礦層的則是使用了兩步驟旋轉塗佈技術,塗佈在複合層上。鈣鈦礦的性質的分析上,我們則是採用了紫外線/可見光光譜儀、光致發光光譜儀,掃描式電子顯微鏡,X-射線繞射儀器。最後使用Keithley 2400電表在1AM 1.5G的條件下模擬太陽光以進行光電特性的量測。

關鍵字:鉛基鈣鈦礦、二氧化鈦奈米纖維、複合材料、太陽能電池
英文摘要 Recently, perovskite solar cell has attracted great attentions for use in photovoltaic application due to its direct band gap, high absorption coefficient and high carrier mobility. However, difficulties of pore filling in the TiO2 mesoporous layer has been an issue. As a result, we have investigated the use of TiO2 nanoparticle/nanofiber composite, which provides a porous structure better for the pore filling, for use as an electron transport layer. Added advantages include improved electron transport and reduced recombination. Not only nanoparticle/nanofiber composite but also N-Doped TiO2 is used for photoanode in this study to improve optical properties and cell performance of perovskite solar cells. To the best of our knowledge, this is the first study on Pb-based perovskite solar cell that uses such a porous leyer. Titanium nanofibers were fabricated by electrospinning deposition under various conditions. TiO2 nanofiber characteristics will be examined using the Brunauer-Emmett-Teller technique, UV-visible spectroscopy, scanning/transmission electron microscopy (SEM/TEM), X-ray diffraction (XRD), and XPS. The effect of deposition condition on the characteristics of nanofibers was studied. Desired nanofibers were then mixed with commercial P25 Titania nanoparticles to form a smooth nanoparticle/nanofiber composite film using a spincoating technique. Perovskite layer was deposited on the compisite layer using a two step spin coating process. Perovskite characteristics were examined using UV-Visible spectroscopy, photoluminescene spectroscopy, SEM, and XRD. Finally, photovoltaic characterization was performed under 1 Sun AM 1.5 G simulated sunlight using a Keithley 2400 sourcemeter.
論文目次 Contents
Contents……………….………………………………………..……………………I
List of Tables……………………………………..…………………..…………….IV
List of Figures……………………………………...……………….....…………...VI
1. Introduction……...………...…………………...……………………….……….1
1.1 Preface……..………………………………………………………...……1
1.2 Objective and Motivation……………….…..…………….…..……….......3
2. Fundamental Theory and Literature Review…………..……………...5
2.1 Solar Cells Development....................................…..……….....…………...5
2.2 Perovskite Brief Introduction .........….………........................……………7
2.2.1 Organometal Halide Perovskite…...………………..……...……9
2.2.2 Working Mechanism of Perovskite Solar Cells………...……10
2.2.3 Materials and Fabrication of Perovskite Solar Cells…........11
2.3. Type of Perovskite Solar Cells...............................................................13
2.3.1 Planar Heterojunction PSCs..........................................................14
2.3.2 Meso-Superstructures PSCs.........................................................16
2.3.3. Meso-Scopic PSCs....................................................................... 17
2.4 Characteristic and Application of TiO2 Nanofiber........................19
2.5 Characteristic and Application of N-Doped TiO2 ........................22
2.6 Synthesis of N- Doped TiO2 Nanofiber...........................................24
3 Experimental Method...………………………….. …….…..……….………..26
3.3 TiO2 Nanofiber Fabrication……...........................………………….…..26
3.4 Microwave Assisted Hydrothermal N- Doped TiO2Nanofiber...…..…27
3.5 Perovskite Solar Cell Fabrication
3.5.1 Substrate Preparation……...……………………………...........28
3.5.2 Metal Oxide Layer (Photoanode) Preparation…………………29
3.5.3 Lead Halide Perovskite Synthesis and Deposition…...….....30
3.5.4 Cell Assembly………………………………………………….31
3.6 Materials Characterization……...……………………………………...31
3.6.1 Brunauer-Emmett-Teller (BET) Surface Area.…….......………31
3.6.2 Ultraviolet–Visible (UV-Vis) Spectroscopy...............................33
3.6.3 X-Ray Diffraction (XRD)...............................………................34
3.6.4 Scanning Electron Microscope (SEM)................................35
3.6.5 Photoluminescence Spectroscopy..............................................37
3.6.6. Transmission Electron Microscope (TEM)............................... 38
3.6.7 X-Ray Photoemission Spectroscopy (XPS)...............................40
3.6.8 Four Point Probe Measurement..................................................41
3.6.9 Solar Cell Characterization….....................................................42
4 Result and Discussion……..…...........................…………..….……………...48
4.1. Anatase TiO2 Nanofiber Characterization ….........………………................48
4.1.1. XRD Results…………..………………..…….……………..…48
4.1.2. SEM Results……………………...............................................49
4.1.3. BET Analysis…………….………………….………................53
4.1.4. UV- Vis Results........................................................................57
4.1.5. TEM Results...............................................................................60
4.2. The Effect of Incorporating Nanofiber on Nanoparticles in PSCs Performance .............................................................……….……………..60
4.2.1. SEM Results ......................................................................................60
4.2.2. UV- Vis Results..................................................................................62
4.2.3. PL results............................................................................................66
4.2.4. XRD and SEM Results of Perovskite................................................69
4.2.5. Conductivity Results.................................................................71
4.2.6. Solar Cells Characterization.......................................................71
4.3 N-Doped TiO2 Characterization.........................................................75
4.3.1 XRD Results ......................................................................................75
4.3.2 SEM Results ..........................................................................78
4.3.3 UV- Vis Results.....................................................................80
4.3.4 PL Results ..........................................................................................89
4.3.5 XPS Results .......................................................................................94
4.3.6 Solar Cells Characterization..................................................105
5 Conclusions................................................................................................112
6 Future Work...............................................................................................113
References..................................................................................................114

參考文獻 References
1. Green, M.A; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar Cells Efficiency Tables (Version 47). Prog. Photovoltaics 2015, 20, 606-614.
2. Jeong-Hyeok; In-Hyuk; Norman Pellet; Grätzel,M; Park, N.G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nnano 2014, 9, 927-932.
3. Jeon. N.J.; Noh, J.; Kim Y.C.; Yang,W.S.; Seok, S. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nmat 2015, 13, 897-903.
4. Lee, J.W.; Park N.G; Two-step deposition method for high-efficiency perovskite solar cells. MRS Bulletin 2015, 40, 654-659.
5. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. 19.9%-Efficient ZnO/CdS/CuInGaSe Solar Cell wiyh 81.2% Fill Factor. Prog. Photovoltaics 2008, 16, 235–239.
6. Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.
7. Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media. Chem. Lett. 2012, 41, 397.
8. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5 % Efficient Perovskite Quantum-Dot-Sensitized Solar Cells. Nanoscale 2011, 3, 4088–4093.
9. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 1999, 286, 945.
10. Mitzi, D. B.; Feild, C. A.; Schlesinger, Z.; Laibowitz, R. B. Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite. J. Solid State Chem. 1995, 114, 159–163
11. Snaith, H. J. et al. Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci. 2014, 7, 3061-3068
12. Kanatzidis, M. G. et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8, 489-494.
13. Kim, D. Y. et al. Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes. J. Phys. Chem. C 2009, 113, 21453–21457
14. Jang, S. Y. et al. High-Efficiency, Solid-State, Dye-Sensitized Solar Cells Using Hierarchically Structured TiO2 Nanofibers. ACS Appl. Mater. Interfaces 2011, 3, 1521–1527
15. Boix, P.P. et al. High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale, 2014, 6, 1675–1679
16. Chuangchote, S. , Sagawa, T. , Yoshikawa, S. Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer. Appl. Phys. Lett. 93, 033310 _2008_
17. Bing Tan and Yiying Wu. Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites. J. Phys. Chem. B 2006, 110, 15932-15938
18. Huang K. J. et al. Influence of TiO2 Nanofiber Additives for High Efficient Dye-Sensitized Solar Cells J. Nanosci. Nanotechnol. 2011, Vol. 11, 1522-1524
19. Yang J. et al. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J Solid State Chemistry. 2008, 181, 130-136
20. Kim et al. High-Efficiency Electrode Based on Nitrogen-Doped TiO2 Nanofibers for Dye-Sensitized Solar Cells. Electrochemical Acta. 2014, 115, 493-498.
21. Wang et al. Nitrogen Doped 3D Titanium Dioxide Nanorods Architecture with Significantly Enhanced Visible Light Photoactivity. J. Phys. Chem. DOI: 10.1021/jp512622j. 2015
22. Yan Z. et al. Preparation of Highly Visible-light Active N-doped TiO2 Photocatalyst. J. Mater. Chem., 2010, 20, 5301–5309
23. Huang et al, Boosting Photovoltaic Performance of Dye Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co- Doped TiO2 Photoanode. Nature Scientific Reports., DOI: 10.1038/srep11922
24. Ting et al, 2013 Microwave Assisted Hydrothermal Synthesis of TiO2 Mesoporous Beads Having C and/or N Doping for Use in High Efficiency All-Plastic Flexible Dye Sensitized Solar Cells. Journal of The Electrochemical Society., 2013, 160(3), 160-165
25. Hong et al, In Situ Processed Gold Nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale, 2016, 8, 2664-2677
26. Oleksiak et al, Novel Nitrogen Precursors for Electrochemically Driven Doping of Titania Nanotubes exhibiting enhanced photoactivity. New J. Chem., 2015, 39, 2741-2751
27. He et al, The Doping Mechanism of Cr into TiO2 ad its influence on the photocatalytic performance. Phys. Chem. Chem. Phys. 2013, 15, 20037 – 20045
28. Dai et al, Retarded Charge Recombination in Dye Sensitized Nitrogen- Doped TiO2 Solar Cells. J. Phy. Chem. C 2010, 114, 1627-1632
29. Ma et al, High Efficiency Dye Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode. Nano Letter. 2005, Vol. 5 No.12, 2543-2547
30. Ma et al, Effect of N Dopant Amount on the Performance of Dye Sensitized Solar Cells Based on N-Doped TiO2 Electrodes. J. Phys. Chem. C 2011, 115, 21494-21499
31. Wang et al, One Dimensional Nanostructures, SpringerBriefs in Materials, DOI: 10.1007/978-3-642-36427-3_2
32. Kuo et al, Effects of polymer media on electrospun mesoporous titania nanofibers. Materials Chemistry and Physics 107 (2008) 480–487
33. Kuo, et al, Light Scattering and Enhanced Photoactivities of Electrospun Titania Nanofibers. J. Phys. Chem. C 2012, 116, 3857−3865
34. Lee, M. M.; Teuscher, J.; Miyasaka, I.; Murakami, T. M.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647
35. Chen, Q.; Zhou, H.; Hong, Z.; luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc. 2013, A–D.
36. Yan, K.; Qiu, Y.; Chen, W.; Zhang, M.; Yang, S. A Double Layered Photoanode Made of Highly Crystalline TiO2 Nanooctahedra and Agglutinated Mesoporous TiO2 Micorspheres for High Efficiency Dye Sensitized Solar Cells. Energy Environ. Sci. 2011, 4, 2168–217
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw