進階搜尋


下載電子全文  
系統識別號 U0026-1807201416434500
論文名稱(中文) 缺陷對寬能隙異質磊晶膜之結構/光/光電特性影響之研究
論文名稱(英文) Effects of defects on structural, luminescence, and optoelectronic properties of wide bandgap heteroepitaxials
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 雷哈娜
研究生(英文) Parvaneh Ravadgar
學號 L78007018
學位類別 博士
語文別 英文
論文頁數 72頁
口試委員 口試委員-李欣縈
口試委員-林祐仲
召集委員-陳錦山
口試委員-何志浩
指導教授-洪瑞華
中文關鍵字 點缺陷  錯位  裂紋  光電  發光 
英文關鍵字 point defects  dislocations  cracks  optoelectronic  luminescence 
學科別分類
中文摘要 已知寬能帶異質接面材料之缺陷將會影響光電元件的性能。本研究主要探討結構上的點缺陷對於光電元件發光特性的影響,並且將針對β-Ga2O3及Ga摻雜入ZnO (GZO)後相關的光學特性進行研究。研究將利用拉賽福背向式散射儀(Rutherford backscattering)、 X射線光電子能譜儀(xps)、穿透式電子顯微鏡、x光繞射技術與場發射掃瞄式電子顯微鏡等多種檢測方式來分析與探討此些材料的結構特性與差排接合相關機制。此外, 本論文同時探討氮化鎵材料, 研究氮化鎵薄膜之差排缺陷產生與合併,並以濕式蝕刻, 場發掃描式電子顯微鏡,與穿透使電子顯微鏡等分析技術進行插排缺陷之研究。針對裂紋對GaN/β-Ga2O3異質接面發光性能影響的研究。藉由場發掃描式電子顯微鏡確認裂紋的表面形貌,光激發發光頻譜和陰極電子激發發光此西技術用來檢測試片的發光性質。由研究發現,差排的形成歸因於馬賽克成長,即扭曲雙晶晶界接合的延伸。另一方面,由研究發現,結晶結構與裂縫對β-Ga2O3異質接面元件的時依性光響應的影響大於點缺陷的影響。此外, 本研究亦探討快速退火處理對GZO異質接面導致部分ZnO結構晶體排列方向由(002)轉至 (100) 和(101)之形成機制, 與光電特性之影響。
英文摘要 Defects in wide bandgap heteroepitaxials may affect the functionality of their related optoelectronic devices. In this research, the effects of point defects on structural, luminescence, and optoelectronic properties of β-Ga2O3 and Ga doped ZnO (GZO) heteroepitaxials are investigated. Rutherford backscattering and X-ray photoemission spectroscopes are used to evaluate the type and ratio of the point defects in the materials. Transmission electron microscopy (TEM) and X-ray diffraction techniques are used to study the structural properties of the samples. The origin and mechanism of dislocation merging in GaN is also evaluated. Wet chemical etching, field-emission scanning electron microscopy (FE-SEM), and TEM are the methods used to study dislocations. The effect of cracks on luminescence properties of GaN and β-Ga2O3 heteroepitaxials is studied. FE-SEM technique is used to check the morphology of cracks. Photoluminescence (PL) and cathodoluminescence (CL) techniques are employed to study luminescence properties of the samples. The formation of dislocations is attributed to the extension of coalescences at boundaries of tilting-twining nucleation grains “mosaic growth”. In functional time-dependent photoresponsivity of devices based on β-Ga2O3 heteroepitaxials, point defects contribution overcomes the contribution of crystallinity. Crystalline structure and crack density affect the intensities and emission regions of CL spectra in GaN, β-Ga2O3, and GZO heteroepitaxials more than point defects. Rapid thermal annealing of GZO heteroepitaxials induced a partial change in the dominant direction of crystallinity from (002) ZnO structure to (100) and (101) ZnO structure. Therefore, PL peak revealed two near band emission peaks for the mixed-structured GZO sample.
論文目次 Summary.........................................................................................................................................iii
Preface............................................................................................................................................iv
List of publications......................................................................................................................... v
Acknowledgements.........................................................................................................................vi
Contents.........................................................................................................................................vii
1 INTRODUCTION...................................................................................................................1
1.1 What is a heteroepitaxial?....................................................................................................1
1.2 Defects in heteroepitaxials...................................................................................................1
1.2.1 Point defects
1.2.2 Dislocations
1.2.3 Cracks
1.3 Effects of defects on optoelectronic functionality of devices based on wide bandgap nitride and oxide heteroepitaxials....................................................................................................3
1.4 Common defects in GaN......................................................................................................3
1.5 Common defects in β-Ga2O3................................................................................................5
1.6 Common defects in GZO.....................................................................................................5
2 MATERIALS AND METHODS............................................................................................9
2.1 Sample preparation for visualization and analysis of dislocations in GaN.........................9
2.2 Sample preparation to study the effects of cracks on luminescence properties of GaN......9
2.3 Synthesis of β-Ga2O3 heteroepitaxials and related photodetectors....................................10
2.4 Synthesis of GZO heteroepitaxials....................................................................................11
3 RESULTS and DISCUSSION..............................................................................................15
3.1 Point defects....................................................................................................................15
3.1.1 Effects of point defects on structural properties of β-Ga2O3..........................15
3.1.1.1 Structural analyses using a synchrotron HR-XRD
3.1.1.2 Cross-sectional TEM analyses
3.1.1.3 Atomic composition study using an RBS
3.1.2 Effects of point defects on structural properties of GZO................................17
3.1.2.1 Chemical Composition
3.1.2.2 Structural Analysis
3.1.2.3 Morphology and Topography Analysis
3.1.3 Effects of point defects on optoelectronic properties of GZO.........................19
3.1.3.1 Work Function
3.1.3.2 Transmittance Analysis
3.1.3.3 Optical Bandgap Energy
3.1.4 Effects of point defects on luminescence properties of GZO..........................21
3.1.4.1 PL Spectroscopy
3.1.5 Effects of point defects on performance of optoelectronic devices based on β-Ga2O3...................................................................................................................23
3.1.5.1 Time-dependent photoresponsivity
3.1.5.2 Mechanism of point defects in photoresponsivity
3.2 Dislocations.....................................................................................................................34
3.2.1 Structural analysis of dislocations in GaN-based light emitting diodes.34
3.2.1.1 Etch pits morphology
3.2.1.2 TEM study of etch pits
3.2.1.3 Morphology of coalescences at boundaries of dislocations
3.2.1.4 Simulation of etch pits
3.2.2 Dislocation interactions in GaN heteroepitaxials (single crystals).........36
3.2.2.1 Fundamental identities of an edge dislocation
3.2.2.2 Edge dislocations and entropy
3.2.2.3 The possible dualities between single crystal and amorphous systems
3.2.2.4 Prohibition of dislocation merging to a perfect region
3.2.2.5 Wave-particle characteristics of dislocations
3.2.2.6 Observation of Peierls stress among the merging dislocations
3.3 Cracks..............................................................................................................................49
3.3.1 Effects of cracks on luminescence properties of GaN heteroepitaxials..49
3.3.1.1 Effects of cracks on CL spectrum of GaN/Si heteroepitaxials
3.3.1.2 Morphology of cracks in GaN/Si heteroepitaxials
3.3.1.3 Effects of cracks on CL spectrum of GaN/sapphire heteroepitaxials
3.3.1.4 Morphology of cracks in GaN/sapphire heteroepitaxials
3.3.2 Effects of cracks on structural properties of β-Ga2O3 heteroepitaxials.52
3.3.2.1 Surface morphologies
3.3.2.2 Cross-sectional morphologies
3.3.3 Effects of cracks on luminescence properties of β-Ga2O3 heteroepitaxials............................................................................................53
3.3.3.1 CL analyses
4 CONCLUSION......................................................................................................................63
Bibliography.................................................................................................................................65
參考文獻 1. J.E. Ayers, Heteroepitaxy of semiconductors: Theory, Growth, and Characterization, CRC Press, (2007).
2. F.H. Stillinger and T.A. Weber, Computer simulation of local order in condensed phases of silicon, Phys Rev B 31, 5262 (1985).
3. E. Irene, Electronic Materials Science, John Wiley & Sons: Hoboken, NJ, (2005).
4. A.I. Gusev, A.A. Renpel, and A.J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds Springer, Berlin, (2001).
5. D.R. Askeland, The Science and Engineering of Materials, 2nd edn, PWS-KENT, Boston, (1989).
6. P. Ravadgar, R.H. Horng, S.L. Ou, A visualization of threading dislocations formation and dynamics in mosaic growth of GaN-based light emitting diode epitaxial layers on (0001) sapphire, Appl Phys Lett 101, 231911 (2013).
7. J.H. You, H.T. Johnson, Effect of screw dislocation density on optical properties in n-type wurtzite GaN, J Appl Phys 101, 023516 (2007).
8. T. Ishida, K. Kakushima, T. Mizoguchi, H. Fujita, Role of dislocation movement in the electrical conductance of nanocontacts, Nature Scientific Reports 2, 623 (2012).
9. M.J. Sablik, Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels, J Appl Phys 89, 5610 (2001).
10. J.E. Sinclair, P.C. Gehlen, R.G. Hoagland, J.P. Hirth, Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling, J Appl Phys 49, 3890 (1978).
11. G.P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York (1979).
12. T.C. Lu, J. Yang, Z. Suo, A.G. Evans, R. Hecht, and R. Mehrabian, Matrix cracking in intermetallic composites caused by thermal expansion mismatch, Acta Metall Mater 39, 1883 (1991).
13. J.J. Gilman, C. Knudsen, and W.P. Walsh, Cleavage cracks and dislocation in LiF crystals, J Appt Phys 29, 601 (1958).
14. J. Polák, On the role of point-defects in fatigue crack initiation, Mater Sci Eng 92, 71 (1987).
15. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures Cambridge University Press, Cambridge (2003).
16. A. Khan, A. Balakrishnan, and T. Katona, Ultraviolet light-emitting diodes based on group three nitrides, Nat. Photonics 2, 77 (2008).
17. M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, and Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes, Appl. Phys. Lett. 91, 183507 (2007).
18. C. Mion, J.F. Muth, E.A. Preble, and D. Hanser, Accurate dependence of gallium nitride thermal conductivity on dislocation density, Appl. Phys. Lett. 89, 092123 (2006).
19. Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brutzam, R. Bertram, S. Ganschow, and R. Fornari, Czochralski growth and characterization of β-Ga2O3 single crystals, Cryst. Res Technol 45, 1229 (2010).
20. M.A. Blanco, M.B. Sahariah, H. Jiang, A. Costales, and R. Pandey, Energetics and migration of point defects in Ga2O3, Phys Rev B 72, 184103 (2005).
21. R. Suzuki, S. Nakagomi, Y. Kokubun, Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer Appl Phys Lett 98, 131114 (2011).
22. D.S. Ginley, C. Bright, Transparent conducting oxides, Mater Res Soc Bul, 25, 15 (2000).
23. R.H. Horng, K.C. Shen, C.Y. Yin, C.Y. Huang, and D.S. Wuu, High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications, Opt Exp 21, 14452 (2013).
24. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432, 488 (2004).
25. J. Elsner, R. Jones, M.I. Heggie, P.K. Sitch, M. Haugk, Th. Frauenheim, S. Öberg, and P.R. Briddon, Deep acceptors trapped at threading-edge dislocations in GaN, Phys Rev B 58, 12571 (1998).
26. C. Mion, J.F. Muth, E.A. Preble, and D. Hanser, Accurate dependence of gallium nitride thermal conductivity on dislocation density, Appl Phys Lett 89, 092123 (2006).
27. H.G. Chen, T.S. Ko, S.C. Ling, T.C. Lu, H.C. Kuo, S.C. Wang, Y.H. Wu, and L. Chang, Dislocation reduction in GaN grown on stripe patterned r-plane sapphire substrates, Appl Phys Lett 91, 021914 (2007).
28. L. Lu, Z.Y. Gao, B. Shen, F.J. Xu, S. Huang, Z.L. Miao, Y. Hao, Z.J. Yang, G.Y. Zhang, X.P. Zhang, J. Xu, and D.P. Yu, Microstructure and origin of dislocation etch pits in GaN epilayers grown by metal organic chemical vapor deposition, J Appl Phys 104, 123525 (2008).
29. A.E. Romanov, T.J. Baker, S. Nakamura, and J.S. Speck, Strain-induced polarization in wurtzite III-nitride semipolar layers, J Appl Phys 100, 023522 (2006).
30. M.A. Moram, C.S. Ghedia, D.V.S. Rao, J.S. Barnard, Y. Zhang, M.J. Kappers, and C.J. Humphreys, On the origin of threading dislocations in GaN films, J Appl Phys 106, 073513 (2009).
31. X.H. Wu, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U.K. Mishra, S.P. DenBaars, and J.S. Speck, Dislocation generation in GaN heteroepitaxy, J Cryst Growth 189–190, 231 (1998).
32. A. Béré and A. Serra, Atomic structure of dislocation cores in GaN, Phys Rev B 65, 205323 (2002).
33. A. Béré and A. Serra, On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries, Philos Mag 86, 2159 (2006).
34. I. Belabbas, J. Chen, and G. Nouet, A new atomistic model for the threading screw dislocation core in wurtzite GaN, Comp Mat Sci 51, 206 (2012).
35. L.Y. Gao, M.J. Zheng, M. Zhong, M. Li, L. Ma, Preparation and photoinduced wettability conversion of superhydrophobic β-Ga2O3 nanowire film, Appl Phys Lett 91, 013101 (2007).
36. S.M. Prokes, W.E. Carlos, O.J. Glembocki, Growth and characterization of single crystal Ga2O3 nanowires and nano-ribbons for sensing applications, Proc SPIE 6008, 60080C (2005).
37. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi: Growth of β-Ga2O3, Single crystals by the edge-defined, film fed growth method, Jpn J Appl Phys 47, 8506 (2008).
38. A.V. Kvit, A.B. Yankovich, V. Avrutin, H. Liu, N. Izyumskaya, U. Ozgur, H. Morkoc, and P.M. Voyles, Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy, J Appl Phys 112, 123527 (2012).
39. http://en.wikipedia.org/wiki/Burgers_vector
40. https://courses.eas.ualberta.ca/eas421/lecturepages/microstructures.html
41. P. Erhart, A. Klein, and K. Albe, First-principles study of the structure and stability of oxygen defects in zinc oxide, Phys Rev B 72, 085213 (2005).
42. J.F. Scott and M. Dawber, Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics, Appl Phys Lett 76, 3801 (2000).
43. A.S. Foster, V.B. Sulimov, F.L. Gejo, A.L. Shluger, and R.N. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia, Phys Rev B 64, 224108 (2001).
44. A.S. Foster, F.L. Gejo, A.L. Shluger, and R.M. Nieminen, Vacancy and interstitial defects in hafnia, Phys Rev B 65, 174117 (2002).
45. J.B. Varley, J.R. Weber, A. Janotti, and C.G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga2O3, Appl Phys Lett 97, 142106 (2010).
46. F. Devynck, M. Iannuzzi, and M. Krack, Frenkel pair recombinations in UO2: Importance of explicit description of polarizability in core-shell molecular dynamics simulations, Phys Rev B 85, 184103 (2012).
47. B.J. Morgan and P.A. Madden, Effects of lattice polarity on interfacial space charges and defect disorder in ionically conducting AgI heterostructures, Phys Rev Lett 107, 206102 (2011).
48. Z.L. Wang, J.S. Yin, and Y.D. Jiang, EELS analysis of cation valence states and oxygen vacancies in magnetic oxides, Micron 31, 571 (2000).
49. A. Linsebigler, G. Lu, and J.T. Yates, CO chemisorption on TiO2(110): Oxygen vacancy site influence on CO adsorption, J Chem Phys 103, 9438 (1995).
50. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, and H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film, J Alloys Compounds 448, 21 (2008).
51. W. Tian, C.Y. Zhi, T.Y. Zhai, S.M. Chen, X. Wang, M.Y. Liao, D. Golberg, and Y. Bando, In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse, J Mater Chem 22, 17984 (2012).
52. W. Tian, C.Y. Zhi, T.Y. Zhai, X. Wang, M.Y. Liao, S.L. Li, S.M. Chen, D. Golberg, and Y. Bando, Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors, Nanoscale 4, 6318 (2012).
53. Y. N. Osetsky, D.J. Bacon, and V. Mohles, Atomic modelling of strengthening mechanisms due to voids and copper precipitates in α-iron, Philos Mag 83, 3623 (2003).
54. L. Lu, Z.Y. Gao, B. Shen, F.J. Xu, S. Huang, Z.L. Miao, Y. Hao, Z.J. Yang, G.Y. Zhang, X. P. Zhang, J. Xu, and D. P. Yu, Microstructure and origin of dislocation etch pits in GaN epilayers grown by metal organic chemical vapor deposition, J Appl Phys 104, 123525 (2008).
55. J. Liu, X. Liu, C. Li, H. Wei, Y. Guo, C. Jiao, Z. Li, X. Xu, H. Song, S. Yang, Q. Zhu, Z. Wang, A. Yang, T. Yang, and H. Wang, Investigation of cracks in GaN films grown by combined hydride and metal organic vapor-phase epitaxial method, Nanoscale Res Lett 6, 69 (2011).
56. S.C. Han, J.K. Kim, J.Y. Kim, K.K. Kim, H. Tampo, S. Niki, J.M. J. Lee, Formation of hexagonal pyramids and pits on V-/VI-polar and III-/II-polar GaN/ZnO surfaces by wet etching, electrochem Soc 157, D60 (2010).
57. A. Béré and A. Serra, Atomic structure of dislocation cores in GaN, Phys Rev B 65, 205323 (2002).
58. V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries, Phys Rev B 61, 5587(2000).
59. J.W. P. Hsu, M.J. Manfra, S.N.G. Chu, C.H. Chen, L.N. Pfeiffer, and R.J. Molnar, Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy, Appl Phys Lett 78, 3980 (2001).
60. S. Ryu, K. Kang, and W. Cai, Entropic effect on the rate of dislocation nucleation, Proc Natl Acad Sci USA 108, 5174 (2001).
61. P. Rosakis, A.J. Rosakis, G. Ravichandran, and J. Hodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J Mech Phys Solids 48, 581 (2000).
62. A.A. Benzerga, Y. Bre´chet, A. Needleman, and E. Van der Giessen, The stored energy of cold work: Predictions from discrete dislocation plasticity, Acta Mater 53, 4765 (2005).
63. P.Y. Chan, G. Tsekenis, J. Dantzig, K.A. Dahmen, and N. Goldenfeld, Plasticity and dislocation dynamics in a phase field crystal model, Phys Rev Lett 105, 015502 (2010).
64. P. Suryanarayana, K. Bhattacharya, and M. Ortiz, Coarse-graining Kohn-Sham density functional theory, J Mech Phys Solids 61, 38 (2012).
65. D. Rodney, A. Tanguy, and D. Vandembroucq, Modeling the mechanics of amorphous solids at different length and time scales, Modell Simul Mater Sci Eng 19, 083001 (2011).
66. M. Rosenberg, F. Martino, W.A. Reed, and P. Eisenberger, Compton-profile studies of amorphous and single-crystal SiO2, Phys Rev B 18, 844 (1978).
67. J.D. Lee, B.C. Shim, and B.G. Park, Silicide Application on gated single-crystal, polycrystalline and amorphous silicon FEAs—part I: Mo silicide, IEEE Trans Elect Dev 48, 149 (2001).
68. A. Psaras, R.D. Thompson, S.R. Herd, and K.N. Tu, Structure and growth kinetics of RhSi on single crystal, polycrystalline, and amorphous silicon substrates, J Appl Phys 55, 3536 (1984).
69. S.H. Oh, M. Legros, D. Kiener, and G. Dehm, In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal, Nat Mater 8, 95 (2009).
70. G.I. Stegeman and M. Segev, Optical spatial solitons and their interactions: universality and diversity, Science 286, 1518 (1999).
71. P.B. Karadakov, D.L. Cooper, and J. Garratt, Modern valence–bond description of chemical reaction mechanisms: Diels-Alder reaction, J Am Chem Soc 120, 3975 (1998).
72. T. Ishida, K. Kakushima, T. Mizoguchi, and H. Fujita, Role of dislocation movement in the electrical conductance of nanocontacts, Nature Scientific Reports 2, 623 (2012).
73. M. Kitazawa, T. Kunihiro, and N. Nemoto, Collective excitations and the quasi-particle picture of quarks coupled with a massive boson at finite temperature, Prog Theor Phys 117, 103 (2007).
74. L. Khaykovich and B.A. Malomed, Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons, Phys Rev A 74, 023607 (2006).
75. V. Lubarda and X. Markenscoff, Configurational force on a lattice dislocation and the Peierls stress, Arch Appl Mech 77, 147 (2007).
76. V. Lubarda and X. Markenscoff, A variable core model and the Peierls stress for the mixed (screw-edge) dislocation, Appl Phys Lett 89, 151923 (2006).
77. A. Amo, S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Leménager, R. Houdré, E Giacobino, C. Ciuti, and A. Bramati, Polariton superfluids reveal quantum hydrodynamic solitons, Science 332, 1167 (2011).
78. L.J. Teutonico, Dynamical behavior of dislocations in anisotropic media, Phys Rev 124, 1039 (1961).
79. W. Cai, V.V. Bulatov, J.F. Justo, A.S. Argon, and S. Yip. Intrinsic mobility of a dissociated dislocation in silicon. Phys Rev Lett 84, 3346 (2000).
80. T. Mura, A theory of fatigue crack initiation, Mater. Sci. Eng. A: Struct. Mater.: Properties, Microstruct Process 176, 61 (1994).
81. Y.B. Li, T. Tokizono, M.Y. Liao, M. Zhong, Y. Koide, I. Yamada, and J.J. Delaunay, Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection, Adv Funct Mater 20, 3972 (2010).
82. T.C. Lovejoy, R. Chen, X. Zheng, E.G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S.T. Dunham, F.S. Ohuchi, and M.A. Olmstead, Band bending and surface defects in β-Ga2O3, Appl Phys Lett 100, 181602 (2012).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw