進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1807201316123300
論文名稱(中文) 可辨別之多顆抗消相干量子態與其應用
論文名稱(英文) Distinguishable Multi-Qubit Decoherence-Free States and Their Applications
校院名稱 成功大學
系所名稱(中) 資訊工程學系碩博士班
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 許耿榮
研究生(英文) Geng-Rong Hzu
電子信箱 o0alanjack0o@gmail.com
學號 p76004172
學位類別 碩士
語文別 英文
論文頁數 30頁
口試委員 指導教授-黃宗立
口試委員-李泉明
口試委員-蔡家緯
中文關鍵字 抗消相干雜訊量子態  量子密碼學 
英文關鍵字 Decoherence-Free State  Quantum Cryptography 
學科別分類
中文摘要 近年來,量子理論與量子演算法的發展非常快速。有部份的問題可以非常快速地被量子演算法解決,而這些問題在傳統電腦上是很困難的問題。由於近代加密演算法的安全性是建構在計算困難或是數學難題上,此類演算法將會在量子電腦問世後變得不安全。舉例而言,現今已有可在合數位數之多項式時間內分解合數成其質因數分解的演算法,這個事實使得包含RSA在內所有建立於大數分解的公開金鑰系統直接成為不安全的系統。然而,在量子的環境之下,其安全性並不是建立在於計算安全之上,相對之下,其安全性是直接建立在量子的性質之上,所以有很多的量子密碼學都是基於量子的性質來發展設計。
當我們想要藉由網路傳遞訊息時,在傳遞的過程會有些在通道上的噪音或雜訊干擾。由於其資訊會被編碼成零與一的串列,雜訊可能會對訊息中的部份位元造成翻轉。在一般情形下,人們都是使用錯誤檢查碼來避免這種錯誤發生。由於量子系統的一些特性,如果我們需要藉由傳遞光子(或是量子)傳送資料,那麼會有多種與一般網路會發生的雜訊不同種類的噪音發生,例如消相干性雜訊,阻抗雜訊,以及振幅雜訊等噪音。
本篇論文將會提出可以抵抗集合雜訊的抗消相干雜訊量子態,與可分辨出相異量子態之量測方法以更有效率的方法來做傳輸。本論文會使用量子金鑰分配協定來做為應用展示抗消相干雜訊量子態。
英文摘要 The recent development of quantum theory and quantum algorithms has occurred rapidly. Certain problems can be solved quickly by using quantum algorithms, which are considered difficult problems when using classical computers. Because the security of modern cryptography relies on the computational difficulty of mathematical problems, it is given compromised by the availability of the quantum computer. For example, a quantum algorithm can factor a composite number in polynomial time of digits of chosen composite number. This result causes all the protocols to rely on the difficulty of large number decomposition, including the RSA public key system, causing insecurity. However, in the quantum environment, security does not rely on computational difficulty, but on the quantum property. Therefore, an abundance of quantum cryptography has been developed using the quantum property.
Transporting information through the Internet incurs certain channel noise during transmission. Because the information is encoded as a sequence of 0s and 1s, channel noise may flip bits of information during transmission. People typically use error correction code (ECC) to avoid errors. Because of quantum system properties, transmitting data through transport photons, called quantum bits (qubits), results in certain types of noises that differ from that using classical channel. For example, collective noise and amplitude noise are noises in quantum channel.
This thesis proposes decoherence-free states to negate decoherence noise, using a distinguishable measurement method for more efficient transport, and applies a Quantum Key Distribution (QKD) protocol to demonstrate the usage of
decoherence-free state.
論文目次 中文摘要 III
Abstract V
致謝 VII
Contents VIII
Chapter 1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivaton and Contribution . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . 4
Chapter 2 Basic Quantum Properties 5
2.1 Single Qubit System . . . . . . . . . . . . . . 5
2.2 Multiple Qubit System . . . . . . . . . . . . . 7
2.3 Unitary Operators . . . . . . . . . . . . . . . 8
2.4 Measurement . . . . . . . . . . . . . . . . . . 9
Chapter 3 Collective Noise 11
3.1 Collective-Rotation Noise . . . . . . . . . . . 11
3.2 Collective-Dephasing Noise . . . . . . . . . . . 12
3.3 Collective-Amplitude Damping Noise . . . . . . . 12
Chapter 4 Decoherence-Free States 14
4.1 Basic of Decoherence-Free States . . . . . . . . 14
4.2 The 4-Qubit Decoherence-Free States . . . . . . 15
4.3 The 6-Qubit Decoherence-Free States . . . . . . 16
4.4 The 8-Qubit Decoherence-Free States . . . . . . 18
4.5 Further More . . . . . . . . . . . . . . . . . . 20
Chapter 5 Application 22
Chapter 6 Conclusion 24
Biblography 25
Appendix 28
參考文獻 [1] NBS FIPS PUB 46, “Data encryption standard, national bureau of standards,” U.S. Department of Commerce, (1977).
[2] X. Lai and J. Massey, “A proposal for a new block encryption standard,” In procedding of EUROCRYPT, pp. 17-25, (1990).
[3] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, no.2, pp.120-126, (1978).
[4] V. S. Miller. “Use of Elliptic Curves in Cryptography,” CRYPTO’85 Proceedings Lecture Notes in Computer Science Volume 218, pp417-426 (1986).
[5] T. Kleinjung et al. “Factorization of a 768-bit RSA modulus. International Association for Cryptologic Research,” CRYPTO’10 Proceedings of the 30th annual conference on Advances in cryptology pp333-350
[6] P. W. Shor, “Polynomial-time algorithms for prime vactorization and discrete logarithms on a quantum computer,” SIAM, vol. 26, no.5, pp.1484-1509, (1997)
[7] L. K. Grover. “A fast quantum mechanical algorithm for database search.” STOC ’96 Proceedings of the twenty-eighth annual ACM symposium on Theory of computing 10.1145/237814.237866 (1996)
[8] L. K. Grover. “Quantum Mechanics helps in search for a needle in a haystack,” Phys.Rev.Lett.79 no.2 pp325-328 (1997)
[9] C. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing” IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (1984)
[10] P. W. Shor. “Scheme for reducing decoherence in quantum computer memory,” Phys.Rev.A.52, R2493-R2496 (1995)
[11] P. Zanardi and M. Rasetti. “Noiseless Quantum Codes,” Phys.Rev.Lett.79.3306(1997)
[12] J. Kampe et al. “Theory of decoherence-free fault-tolerant universal quantum computation” Phy.Rev.A.63.042307(2000)
[13] A. Cabello. “Six-qubit permutation-based decoherence-free orthogonal basis,” Phys.Rev.A.75.020301 (2007)
[14] C.-W. Yang and T. Hwang. “Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels,” Quantum Information Processing, 10.1007/s11128-013-0593-x (2013)
[15] X.-H. Li et al. “Efficient quantum key distribution over a collective
noise channel,” Phys.Rev.A.78.022321 (2008)
[16] X.-M. Xiu et al. “Quantum key distribution protocols with six-photon states against collective noise,” Optics Communications Volume 282, Issue 20, pp4171-4174, 10.1016/j.optcom.2009.07.012 (2009)
[17] T.-Y Wang et al. “Secure authentication of classical messages with decoherence-free states,” Optics Communications Volume 282, Issue 16, pp3382-3385 10.1016/j.optcom.2009.05.036 (2009)
[18] M. Bourennane et al. “Decoherence-Free Quantum Information Processing with Four-Photon Entangled States,” 10.1103/ PhysRevLett.92.107901
[19] S. Gaertner et al. “High-fidelity source of four-photon entanglement,” 10.1007/s00340-003-1321-5
[20] C. E. Shannon. “A Mathematical Theory of Communication,” The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948
[21] A. Cabello. “Supersinglets,” Journal of Modern Optics, VOL. 50, NO. 6-7, pp.1049-1061 (2003)
[22] F.-G. Deng et al, “Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement,” Chinese.Phys.Lett.vol 21 pp2097
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw