進階搜尋


下載電子全文  
系統識別號 U0026-1807201313164300
論文名稱(中文) 台灣GPS連續觀測站之時間序列噪訊分析及其在地震學之應用
論文名稱(英文) Time series noise analysis of the Taiwan continuous GPS stations and GPS applications on Seismology in Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 101
學期 2
出版年 102
研究生(中文) 洪煌凱
研究生(英文) Huang-Kai Hung
學號 l48951067
學位類別 博士
語文別 英文
論文頁數 87頁
口試委員 指導教授-饒瑞鈞
口試委員-樂鍇‧祿璞崚岸
口試委員-楊名
口試委員-劉啟清
口試委員-林修國
口試委員-張午龍
中文關鍵字 GPS連續站 
英文關鍵字 continuous GPS station 
學科別分類
中文摘要 為了加強了解台灣複雜之發震構造特性與台灣區域坐標框架之建立,近二十年來於台灣(含外島)共架設了近400個GPS連續站。這些連續站資料經整合後之高密度GPS連續資料陣列對於用來研究地表下之構造與斷層特性將能提供高空間解析力之地表位移資訊。因此,本研究蒐集、解算及分析台灣之高密度GPS連續資料陣列,獲得每站每日之地表位移成果,並探討其誤差特性及意義。此外,針對提供高頻連續資料之觀測站(超過200個),在大地震發生之時段求得單一時刻之位移,用來獲取真實之地表地震波形,用以輔助或補償地震儀之資料。研究結果顯示,台灣之GPS連續站位移序列之雜訊特性主要控制在於台灣之水文、地下地質構造及基座型式之因素。此外,經高密度之高頻GPS位移成果顯示台灣之高頻GPS密集觀測網可應用於地震規模大於6之遠場與近場之表面波觀測。未來若能對此高密度GPS觀測網資料進行即時整合與分析,將能對台灣因地震、豪雨所造成的地表變形與地震波震幅快速估計,進而達到防災減災之目的。
英文摘要 There are nearly four hundred continuous GPS (CGPS) stations in Taiwan for the better understanding of the seismogenesis, complicated tectonic structures and the improvement of the establishment of the coordinate reference frame in Taiwan. The measurements of this dense array are capable of providing precise surface deformations in high spatial resolution for the investigations of the structure and fault characteristics. We estimated and analyzed the daily position time series for all the CGPS stations in Taiwan to study their noise characteristics and deformation features. Moreover, there are also about two hundred CGPS stations available for high sampling rate of 1-Hz interval (called high-rate CGPS stations) among the Taiwan CGPS array. We use the high-rate CGPS observations to derive the epoch-by-epoch positions for the seismic waveforms and coseismic deformation during large earthquakes to compensate the effects of clipping or saturation on the seismographs. The results show that the patterns of the CGPS noise characteristics are significantly different at various areas of Taiwan, and appear to be influenced by regional hydrological loading, underground structure, and the types of monuments. On the other hand, the motions generated by the high-rate CGPS indicate that the waveforms are capable of detecting earthquakes with magnitude greater than six.
論文目次 Abstract i
摘要 ii
致謝 iii 
Contents iii
List of Tables vii
List of Figures vii

Chapter 1
Introduction.........................................................................................................................1
Chapter 2
Seasonal noises of CGPS position time series in Taiwan...............................................3
2.1 Introduction...........................................................................................................3
2.2 Introduction and collections of GPS data.............................................................4
2.3 Data processing and analysis................................................................................4
2.4 Results...................................................................................................................5
2.5 Discussion ............................................................................................................7
2.6 Conclusions...........................................................................................................8
Chapter 3
Noises of CGPS daily position time series from various monuments in Taiwan……27
3.1 Introduction.........................................................................................................27
3.2 Data and methods............................................................................................... 28
3.3 Results.................................................................................................................29
3.4 Discussion ..........................................................................................................30
3.5 Conclusions.........................................................................................................31
Chapter 4
Ground motions derived from high-rate GPS for the 2010 ML 6.4 Jiashian, Taiwan, earthquake.......................................................................................................................38
4.1 Introduction........................................................................................................38
4.2 Data and methods...............................................................................................39
4.3 Results................................................................................................................40
4.4 Discussion .........................................................................................................41
4.5 Conclusions........................................................................................................42
Chapter 5
Surface waves of the 2011 Tohoku earthquake: Observations of Taiwan's dense high-rate GPS network…………………………………………………………………49
5.1 Introduction.......................................................................................................49
5.2 Data collections.................................................................................................50
5.3 Data processing.................................................................................................51
5.4 Analyses and results..........................................................................................52
5.5 Discussion ........................................................................................................56
5.6 Conclusions.......................................................................................................58
Chapter 6
Conclusions.....................................................................................................................76
Appendix A.....................................................................................................................78
Appendix B.....................................................................................................................79
Bibliography ..................................................................................................................80


List of Tables
Table 3-1 The descriptions of the different types of the monument in Taiwan 36
Table 3-2 The spectral index and noise amplitudes in different type of the monuments 37
Table 4-1 Averages and standard deviations of the CGPS position time series after applying the MSF and SP filterings 48
Table 5-1 Information of CGPS-BB co-located stations 75

List of Figures
Fig. 1-1 Locations of the continuous GPS stations in Taiwan. 2
Fig. 2 1 Locations of the continuous GPS stations in Taiwan and neighboring islands used in this study. 9
Fig. 2 2 Statistical histogram of building time and number of continuous GPS stations. 10
Fig. 2 3 Statistical histogram of weighted root mean square (WRMS) for all position time series of CGPS stations in Taiwan in all 3 components 10
Fig. 2 4(a) Phasor diagram of annual signals 11
Fig. 2 4(b) Phasor diagram of semi-annual signals 12
Fig. 2 5 Annual periodic signals in north component. 13
Fig. 2 6 Annual periodic signals in east component 14
Fig. 2 7 Annual periodic signals in up component 15
Fig. 2 8 Semi-annual periodic signals in north component. 16
Fig. 2 9 Semi-annual periodic signals in north component. 17
Fig. 2 10 Semi-annual periodic signals in up component. 18
Fig. 2-11(a) Seasonal horizontal amplitudes in Taiwan. 19
Fig. 2-11(b) Seasonal vertical amplitudes in Taiwan 20
Fig. 2-11(c) Seasonal amplitudes in Taiwan 21
Fig. 2-12 CGPS vertical displacements in western plain and the comparison with the groundwater level. 22
Fig. 2 13 CGPS vertical displacements in Pingtung plain in southwestern Taiwan and the comparison with the groundwater level 22
Fig. 2 14 CGPS horizontal displacements (E, N) in Pingtung plain in southwestern Taiwan and the data of corresponding groundwater level 23
Fig. 2-15 Areal strain, vertical displacements, and groundwater level changing in the Pingtung plain 24
Fig. 2-16 CGPS displacements in eastern Taiwan in east-west component 25
Fig. 2-17 CGPS displacements in east-west component, rain fall data, and groundwater level changing in eastern Taiwan 26
Fig. 3-1 Locations of CGPS stations in Taiwan and surrounding islands 31
Fig. 3-2 Pictures of the various monuments in Taiwan 32
Fig. 3-3 Amplitudes and phase vectors of annual displacement variations in various monument types. 33
Fig. 3-3 Amplitudes and phase vectors of annual displacement variations in various monument types (continued) 34
Fig. 3-4 Seasonal displacements at CGPS stations equipped with the monument of 1-pod roof 35
Fig. 3-5 Sketch figure of the seasonal motions due to the un-uniform of expansion and contraction from the temperature variations on summer and winter 36
Fig. 4-1 Distribution of high-rate CGPS stations surrounding the epicenter of the Jiashian earthquake 42
Fig. 4-2 Position time series of stations CISH and MLO1 in 1000 seconds before the earthquake origin time 43
Fig. 4-3 Power spectral density (PSD) of the position time series of station CISH and MLO1 44
Fig. 4-4 Position time series obtaining by the high-rate CGPS measurements of station CISH and MLO1 during the time period of the earthquake happening 44
Fig. 4-5 Displacement time series of high-rate CGPS and co-located accelerometers 45
Fig. 4-6 PSD of the position time series of station CISH, LGUE, and SCES for both the GPS and seismic observations 46
Fig. 4-7 Coseismic deformations generated from static daily positions and kinematic positioning 47
Fig. 4-8 CGPS displacement time series on the north and east components 47
Fig. 4-9 Displacement of high-rate CGPS from 4-48 second after the origin time of Jiashian earthquake. 48
Fig. 5-1 Map of locations of 210 high-rate continuous GPS stations and 15 BATS broadband seismic stations. 60
Fig. 5-2 High-rate GPS position time series estimated from 5400 epochs prior to the Tohoku event. 61
Fig. 5-3 High-rate GPS position time series estimated from 5400 epochs prior to the Tohoku event in the east component 62
Fig. 5-4 Unfiltered displacement time series for CGPS sites and broadband seismometers during Tohoku earthquake in the east-west component. 63
Fig. 5-5 Amplitude spectrums for all three components of ground motions at GPS stations and broadband seismic stations 64
Fig. 5-6 Band-pass filtered displacement time series for eight co-located pairs of CGPS and broadband seismometer during the Tohoku earthquake 65
Fig. 5-7 Position time series of CGPS station GS19 in radial and transverse components, respectively at 500-1000 seconds after the Tohoku earthquake 66
Fig. 5-8 Position time series and particle motions for CGPS station GS19 in radial and vertical components 67
Fig. 5-9 Displacement field in Taiwan attributed to seismic waves of the Tohoku earthquake generated from the combination of high-rate GPS and broadband seismic observations 68
Fig. 5-10 Displacements time series generated from 156 high-rate CGPS stations and 15 broadband seismic observations in Taiwan during the Tohoku earthquake 69
Fig. 5-11 Displacement time series generated from 156 high-rate CGPS stations and 15 broadband seismic observations in Taiwan during the Tohoku earthquake. 70
Fig. 5-12 Distribution of maximum peak-to-peak amplitude of the Rayleigh waves and Love waves 71
Fig. 5-13 The relationship between the epicentral distance and the peak-to-peak amplitude in the Rayleigh and Love waves 71

Fig. 5-14 Distribution of maximum peak-to-peak amplitude of the later phases observed for each CGPS station 72
Fig. 5-15 Map of the Taiwan region showing the amplitude variations of the later phases overlap with the Mesozoic basement depth contour in western Taiwan 73
Fig. 5-16 Displacement time series generated from 156 high-rate CGPS stations and 15 broadband seismic observations in Taiwan during the Mw 7.9 earthquake 74
Fig. 5-17 Displacement time series generated from 156 high-rate CGPS stations and 15 broadband seismic observations in Taiwan during the Mw 7.9 earthquake 75
參考文獻 Abe, K. (1972), Group velocities of oceanic Rayleigh and love waves, Phys. Earth Planet. Inter., 6(5), 391-396.
Agnew, D. C., and K. M. Larson (2007), Finding the repeat times of the GPS constellation, GPS Solut., 11, 71-76, doi:10.1007/s10291-006-0038-4.
Allen, R. M., and A. Ziv (2011), Application of real-time GPS to earthquake early warning, Geophys. Res. Lett., 38, L16310, doi:10.1029/2011GL047947.
Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher (2007), ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112(B9), B09401, doi:10.1029/2007JB004949.
Avallone, A., M. Marzario, A. Cirella, A. Piatanesi, A. Rovelli, C. Di Alessandro, E. D’Anastasio, N. D’Agostino, R. Giuliani, and M. Mattone (2011), Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event, J. Geophys. Res., 116, B02305, doi:10.1029/2010JB007834.
Beavan, J. (2005), Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments, J. Geophys. Res., 110(B8), B08410, doi: 10.1029/2005JB003642.
Bawden, G. W., W. Thatcher, R. S. Stein, K. W. Hudnut, and G. Peltzer (2001), Tectonic contraction across Los Angeles after removal of groundwater pumping effects, Nature, 412(6849), 812-815.
Bettinelli, P., J.-P. Avouac, M. Flouzat, L. Bollinger, G. Ramillien, S. Rajaure, and S. Sapkota (2008), Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology, Earth Planet. Sci. Lett., 266, 332–344, doi:10.1016/j.epsl.2007.11.021.
Beutler, G., et al. (2007), Bernese GPS Software Version 5.0, edited by R. Dach et al., Astron. Inst., Univ. of Bern, Bern.
Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, GPS Meteorology: Remote Sensing of Atmospheric Water Vapor using the Global Positioning System, J. Geophys. Res., 97, 15787– 15801, October 1992.
Bevis, M., E. Kendrick, A. Cser, and R. Smalley (2004), Geodetic measurement of the local elastic response to the changing mass of water in Lago Laja, Chile, Phys. Earth Planet. Inter., 141, 71–78.
Bevis, M., D. Alsdorf, E. Kendrick, L. P. Fortes, B. Forsberg, R. Smalley Jr., and J. Becker (2005), Seasonal fluctuations in the mass of the Amazon River system and Earth's elastic response, Geophys. Res. Lett., 32, L16308, doi:10.1029/2005GL023491.
Bilich, A., J. F. Cassidy, and K. M. Larson (2008), GPS Seismology: Application to the 2002 Mw 7.9 Denali Fault Earthquake, Bull. Seismol. Soc. Am., 98, 593-606, doi:10.1785/0120070096.
Bock, Y., S. A. Gourevitch, C. C. Councelman, R. W. King, and R. I. Abbot (1986), Interferometric analysis of GPS phase observations, Manuscr. Geod., 11, 282-288.
Bock, Y., R. M. Nikolaidis, P. J. de Jonge, and M. Bevis (2000), Instantaneous geodetic positioning at medium distances with the Global Positioning System, J. Geophys. Res., 105(B12), 28,223-28,253, doi:10.1029/2000JB900268.
Bock, Y., L. Prawirodirdjo, and T. I. Melbourne (2004), Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network, Geophys. Res. Lett., 31, L06604, doi:10.1029/2003GL019150.
Boehm, J., A. Niell, P. Tregoning, and H. Schuh (2006), Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33(7), L07304, doi: 10.1029/2005GL025546.
Boehm, J., R. Heinkelmann, and H. Schuh (2007), Short Note: A global model of pressure and temperature for geodetic applications, J. Geod., 81(10), 679-683.
Cassidy, J. F., and G. C. Rogers (2004), The Mw 7.9 Denali fault earthquake of 3 November 2002: felt reports and unusual effects across western Canada, Bull. Seismol. Soc. Am., 94, S53-57, doi:10.1785/0120040607.
Chang, C. P., T. Y. Chang, C. T. Wang, C. H. Kuo, and K. S. Chen (2004), Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan, Mathematics and Computers in Simulation, 67(4-5), 351-359.
Chen, C. H., C. H. Wang, Y. J. Hsu, S. B. Yu, and L. C. Kuo (2010), Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan, Engineering Geology, 115(1-2), 122-131.
Chiang, K. W., W. C. Peng, Y. H. Yeh, and K. H. Chen (2009), Study of alternative GPS network meteorological sensors in Taiwan: Case studies of the plum rains and typhoon Sinlaku, Sensors, 9, 5001-5021, doi: 10.3390/s90605001.
Ching, K. E., R. J. Rau, and Y. Zeng (2007), Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements, J. Geophys. Res., 112, B06422, doi:10.1029/2006JB004439.
Ching, K. E., K. M. Johnson, R. J. Rau, R. Y. Chuang, L. C. Kuo, and P. L. Leu (2011a), Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model, Earth Planet. Sci. Lett., 301, 78-86, doi:10.1016/j.epsl.2010.10.021.
Ching, K. E., M. L. Hsieh, K. M. Johnson, K. H. Chen, R. J. Rau, and M. Yang (2011b), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008, J. Geophys. Res., 116, B08406, doi: 10.1029/2011JB008242.
Choi, K., A. Bilich, K. M. Larson, and P. Axelrad (2004), Modified sidereal filtering: Implications for high-rate GPS positioning, Geophys. Res. Lett., 31, L22608, doi:10.1029/2004GL021621.
Davis, J. P., and R. Smalley Jr. (2009), Love wave dispersion in central North America determined using absolute displacement seismograms from high-rate GPS, J. Geophys. Res., 114, B11303, doi:10.1029/2009JB006288.
Delouis, B., J. M. Nocquet, and M. Vallée (2010), Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high‐rate GPS, InSAR, and broadband teleseismic data, Geophys. Res. Lett., 37, L17305, doi:10.1029/2010GL043899.
Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki (2002), Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res., 107(B4), doi: 10.1029/2001JB000573.
Flouzat, M., P. Bettinelli, P. Willis, J.-P. Avouac, T. Héritier, and U. Gautam (2009), Investigating tropospheric effects and seasonal position variations in GPS and DORIS time-series from the Nepal Himalaya, Geophys. J. Int., 178, 1246–1259, doi:10.1111/j.1365-246X.2009.04252.x.
Galloway, D. L., K. W. Hudnut, S. E. Ingebritsen, S. P. Phillips, G. Peltzer, F. Rogez, and P. A. Rosen (1998), Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California, Water Resour. Res., 34(10), 2573-2585.
Genrich, J. F., and Y. Bock (2006), Instantaneous geodetic positioning with 10–50 Hz GPS measurements: Noise characteristics and implications for monitoring networks, J. Geophys. Res., 111, B03403, doi:10.1029/2005JB003617.
Grapenthin, R., and J. T. Freymueller (2011), The dynamics of a seismic wave field: Animation and analysis of kinematic GPS data recorded during the 2011 Tohoku-Oki earthquake, Japan, Geophys. Res. Lett., 38, L18308, doi:10.1029/2011GL048405.
Hatanaka, Y., T. Hiromichi, A. Yoshiaki, Y. Iimura, K. Kobayashi, and H. Morishita (1994), Coseismic crustal displacements from the 1994 Hokkaido-Toho-Oki earthquake revealed by a nationwide continuous GPS array in Japan—Results of GPS kinematic analysis, paper presented at Japanese Symposium on GPS, Natl. Comm. for Geod., Sci. Counc. of Jpn., GPS Consortium of Jpn., Tokyo.
Heki, K. (2011), A tale of two earthquakes, Science, 332, 1390-1391, doi:10.1126/science.1206643.
Herring, T. (2003), MATLAB Tools for viewing GPS velocities and time series, GPS Solut., 7(3), 194-199.
Herring, T. A., R. W. King, and S. C. McClusky (2009), Introduction to GAMIT/GLOBK, Release 10.35, Mass. Inst. of Technol., Cambridge.
Hill, E. M., J. L. Davis, P. Elosegui, B. Wernicke, and N. A. Niemi (2009), Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada, J. Geophys. Res., 114, B11402, doi:10.1029/2008JB006027.
Ho, C. S. (1986), A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125, 1-16, 1986.
Hoffmann, J., H. A. Zebker, D. L. Galloway, and F. Amelung (2001), Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by Synthetic Aperture Radar Interferometry, Water Resour. Res., 37(6), 1551-1566.
Hofmann-Wellenhof, B., H. Lichtenegger, and E. Wasle (2008), GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more, Springer, 516 pp.
Hsu, Y. J., S. B. Yu, M. Simons, L. C. Kuo, and H. Y. Chen (2009), Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479(1-2), 4-18.
Hsu, Y. J., S. B. Yu, L. C. Kuo, Y. C. Tsai, and H. Y. Chen (2011), Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan, Tectonophysics, 502, 328– 335.
Hung, H. K., and R. J. Rau (2013), Surface waves of the 2011 Tohoku earthquake: Observations of Taiwan’s dense high-rate GPS network, J. Geophys. Res., 118, 332–345, doi:10.1029/2012JB009689.
Johnson, H. O., and D. C. Agnew (1995), Monument motion and measurements of crustal velocities, Geophys. Res. Lett., 22(21), 2905-2908.
King, N. E., et al. (2007), Space geodetic observation of expansion of the San Gabriel valley, California, aquifer system, during heavy rainfall in winter 2004–2005, J. Geophys. Res., 112, B03409, doi:10.1029/2006JB004448.
King, M. A., and C. S. Watson (2010), Long GPS coordinate time series: Multipath and geometry effects, J. Geophys. Res., 115, B04403, doi:10.1029/2009JB006543.
Kouba, J. (2003), Measuring seismic waves induced by large earthquakes with GPS, Stud. Geophys. Geod., 47, 741-755, doi:10.1023/a:1026390618355.
Kumagai, H., T. Ohminato, M. Nakano, M. Ooi, A. Kubo, H. Inoue, and J. Oikawa (2001), Very-long-period seismic signals and caldera formation at Miyake Island, Japan, Science, 293, 687–690.
Langbein, J., F. Wyatt, H. Johnson, D. Hamann, and P. Zimmer (1995), Improved stability of a deeply anchored geodetic monument for deformation monitoring, Geophys. Res. Lett., 22(24), 3533-3536.
Langbein, J. (2008), Noise in GPS displacement measurements from southern California and southern Nevada, J. Geophys. Res., 113, B05405, doi:10.1029/2007JB005247.
Larson, K. M., P. Bodin, and J. Gomberg (2003), Using 1-Hz GPS data to measure deformations caused by the Denali Fault earthquake, Science, 300, 1421-1424.
Larson, K. M., A. Bilich, and P. Axelrad (2007), Improving the precision of high-rate GPS, J. Geophys. Res., 112, B05422. doi:10.1029/2006JB004367.
Larson, K. M. (2009), GPS seismology, J. Geod., 83, 227-233, doi:10.1007/s00190-008-0233-x.
Larson, K. M., M. Polan, and A. Miklius (2010), Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption, J. Geophys. Res., 115, B07406, doi:10.1029/2009JB007022.
Lay, T., and H. Kanamori (2011), Insights from the great 2011 Japan earthquake, Phys. Today, 64, 33, doi:10.1063/PT.3.1361.
Lichten, S. M., and J. S. Border (1987), Strategies for high-precision Global Positioning System orbit determination, J. Geophys. Res., 92(B12), 12,751–12,762, doi:10.1029/JB092iB12p12751.
Lin, A. T. and A. B. Watts (2002), Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107(B9), 2185, doi:10.1029/2001JB000669.
Lin, K. C., J. C. Hu, K. E. Ching, J. Angelier, R. J. Rau, S. B. Yu, C. H. Tsai, T. C. Shin, and M. H. Huang (2010), GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan, J. Geophys. Res., 115, B07404, doi: 10.1029/2009JB006417.
Liu, J. Y., Y. I. Chen, Y. J. Chuo, and H. F. Tsai (2001), Variations of ionospheric total electron content during the Chi-Chi earthquake, Geophys. Res. Lett., 28,1381–1386.
Liu, J. Y., Y. I. Chen, Y. J. Chuo, and C. S. Chen (2006), A statistical investigation of pre-earthquake ionospheric anomaly, J. Geophys. Res., 111, A05304, doi:10.1029/2005JA011333.
Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynamics, 56(5), 394-415.
Miyazaki, S., K. M. Larson, K. Choi, K. Hikima, K. Koketsu, P. Bodin, J. Haase, G. Emore, and A. Yamagiwa (2004), Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data, Geophys. Res. Lett., 31, L21603, doi:10.1029/2004GL021457.
Nikolaidis, R. (2002), Observation of geodetic and seismic deformation with the Global Positioning System, thesis, Univ. of Calif., San Diego.
Ohta, Y., I. Meilano, T. Sagiya, F. Kimata, and K. Hirahara (2006), Large surface wave of the 2004 Sumatra-Andaman earthquake captured by the very long baseline kinematic analysis of 1-Hz GPS data, Earth Planets Space, 58, 153-157.
Ohta, Y., et al. (2012), Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0), J. Geophys. Res., 117, B02311, doi:10.1029/2011JB008750.
Penna, N. T., and M. P. Stewart (2003), Aliased tidal signatures in continuous GPS height time series, Geophys. Res. Lett., 30(23), 2184, doi:10.1029/2003GL018828.
Prawirodirdjo, L., Y. Ben-Zion, and Y. Bock (2006), Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series, J. Geophys. Res., 111, B02408, doi:10.1029/2005JB003716.
Rau, R. J., J. C. Lee, K. E. Ching, Y. H. Lee, T. B. Byrne, and R. Y. Chen (2012), Subduction-continent collision in southwestern Taiwan and the 2010 Jiashian earthquake sequence, Tectonophysics, 578, 107–116, doi:10.1016/j.tecto.2011.09.013.
Sagiya, T. (2004), A decade of GEONET: 1994-2003 – The continuous GPS observation in Japan and its impact on earthquake studies, Earth Planets Space, 56, 29-41.
Segall, P. (2010), Earthquake and Volcano Deformation, Princeton University Press, Princeton and Oxford, 432 pp.
Segall, P., and J. L. Davis (1997), GPS applications for geodynamics and earthquake studies, Annu. Rev. Earth Planet. Sci., 25, 301–336.
Shi, C., Y. Lou, H. Zhang, Q. Zhao, J. Geng, R. Wang, R. Fang, and J. Liu (2010), Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations, Adv. Space Res., 46, 228-235, doi:10.1016/j.asr.2010.03.006.
Simons, M., et al. (2011), The 2011 magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the megathrust from seconds to centuries, Science, 332, 1421-1425, doi:10.1126 science.1206731.
Takasu, T., and S. Kasai (2005), Evaluation of GPS precise point positioning (PPP) accuracy, IEICE Tech. Rep., 105, 40-45.
vanDam, T., G. Mader, and M. Schenewerk (1994), GPS detects co-seismic and post-seismic surface displacements caused by the Northridge earthquake, Eos. Trans. AGU, 75(16), Spring Meet. Suppl. 103.
Watson, K. M., Y. Bock, and D. T. Sandwell (2002), Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin, J. Geophys. Res., 107(B4), 2074, doi:10.1029/2001JB000470.
Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102(B8), 18057-18070.
Wessel, P., and W. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72 (441), 445-446.
Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. M. Nikolaidis, L. Prawirodirdjo, M. Miller, and D. J. Johnson (2004), Error analysis of continuous GPS position time series, J. Geophys. Res., 109(B3), B03412, doi: 10.1029/2003JB002741.
Williams, S. D. P. (2008), CATS: GPS coordinate time series analysis software, GPS Solut., 12, 147–153, doi:10.1007/s10291-007-0086-4.
Yan, H., W. Chen, Y. Zhu, W. Zhang, and M. Zhong (2009), Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes, Geophys. Res. Lett., 36, L13301, doi:10.1029/2009GL038152.
Yang, M., C. L. Tseng, and J. Y. Yu (2001), Establishment and maintenance of Taiwan geodetic datum 1997, J. Surv. Eng., 127, 119-132, doi: 10.1061/(ASCE)0733-9453(2001)127:4(119).
Yeh, T. K., B. F. Chao, C. S. Chen, C. H. Chen, Z. Y. Lee (2012), Performance improvement of network based RTK GPS positioning in Taiwan, Survey Rev., 44, 3-8.
Yu, S. B., H. Y. Chen, and L. C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274(1-3), 41-59.
Yu, S. B., and L. C. Kuo (2001), Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics, 333(1-2), 199-217.
Yu, S. B., Y. J. Hsu, L. C. Kuo, H. Y. Chen, and C. C. Liu (2003), GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B11), 2520, doi: 10.1029/2003JB002396.
Yue, H., and T. Lay (2011), Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1), Geophys. Res. Lett., 38, L00G09, doi:10.1029/2011GL048700.
Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102(B3), 5005-5017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw