系統識別號 U0026-1807201113321600
論文名稱(中文) 利用自組裝胜肽奈米纖維進行梗塞後心血管再生
論文名稱(英文) Tissue Engineering Approaches to Post-infarction Cardiovascular Regeneration Using Self-assembling Peptide Nanofibers
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 林意棟
研究生(英文) Yi-Dong Lin
學號 P8896110
學位類別 博士
語文別 英文
論文頁數 111頁
口試委員 口試委員-王水深
中文關鍵字 生醫材料  心肌組織工程  骨髓幹細胞  血管內皮生長因子  心肌梗塞 
英文關鍵字 biomaterials  cardiac tissue engineering  bone marrow stem cell  vascular endothelial growth factor  myocardial infarction 
中文摘要 缺血性心血管疾病之罹病率與所造成的死亡率在全球各國皆居高不下,在已開發國家當中尤甚。心肌梗塞即是最具威脅的缺血性心血管疾病之一,其常見於冠狀動脈因阻塞而造成下游的心肌缺血,進而在短時間內引發心肌細胞大量死亡,並進入病態的心室重塑,最後走向不可逆的心衰竭。當心肌梗塞發生之後,傳統的方式並無法有效改善與治療。因此,心血管組織工程與再生醫學是一門極待發展的新興技術。幹細胞移植即是一具有潛力的治療方式,然而,細胞移植的存留率與存活率不佳是一尚待克服的難關;另外一項有潛力的治療方式是打入生長因子誘導血管再生,然而,局部控制釋放不佳是此一方式的最大瓶頸。
英文摘要 Ischemic cardiovascular disease (ICD) such as myocardial infarction (MI) is the leading cause of morbidity and mortality throughout the world. MI is often attribute to sudden occlusion of cornary arteries, which subsequently results in irreversible myocardium damage and heart failure. The current treatments, including drug prescription and surgical intervention, can only partially ameliorate the symptoms. Cardiac tissue engineering is thus an imperative need for vascular or myocardial regeneration. Accumulating studies have suggested that numerous adult progenitor / stem cells can contribute to de novo cardiovascular regeneration. Besides, angiogenesis can also be promoted by delivery of growth factors to induce vascular cell proliferation, differentiation, survival and migration. Nevertheless, the present clinical trials appear to be un-satisfactory and controversial. The major hurdle for cell therapy is low survival and retention rate of transplanted cells, while the problems associated with the growth factor administration is local-controlled and sustained delivery within the microenvironments.
Here, we provide a novel self-assembling peptide nanofibers (NFs) based therapy to overcome these difficulties. The nanofibrous hydrogel can not only function as scaffold to prolong cell retention but also control local delivery of proteins, and thereby enhancing angiogenic effects of delivered cells and proteins. Therefore, this thesis is divided into two parts. In the first part, we hypothesize that intramyocardial injection of NFs thickens the infarcted myocardium and increases transplanted autologous bone marrow mononuclear cell (MNC) retention to attenuate cardiac dysfunction. Our data revealed NF injection significantly improved diastolic function and reduced ventricular remodeling 28 days after treatment. Injection of MNCs alone ameliorated systolic function only, whereas injection of MNCs with NFs significantly improved both systolic and diastolic functions, increased transplanted cell retention, and promoted capillary density in the peri-infarct area.
In the second part, we hypothesize that intramyocardial injection of NFs along with vascular endothelial growth factor (VEGF) allows controlled local delivery with prolonged effect of VEGF and therapeutic angiogenesis. Our results demostrated intramyocardial injection of VEGF along with nanofibrous hydrogel has significantly improved post-infarction angiogenesis, arteriogenesis and thus cardiac performance. Importantly, this approach not only allowed controlled local delivery with prolonged effect of VEGF without systemic harmful effects, but also created a favorable microenvironment in vivo for recruitment and vascular integration of mural cells. Strikingly, the engineered vascularized microenvironment further attracted a population of cardiomyocyte-like small myocytes stained positive for cardiac troponin I, indicating the potential induction of cardiac regeneration.
Our results demonstrate that NF injection enhances the effcacy of cell and protein therapy. Importantly, we validate the feasibility and safety of this approach in the large animal study as a pre-clinical trial in the first part of thesis. Besides, we investigate the underlysing mechanism of beneficial NF injection using rodent model in the second part of thesis. We believe the unprecedented study holds not only valuable inspiration for basic biomedical research but also potency for translational application in the foreseeable future.
論文目次 Abstract I
摘要 III
誌謝 V
Index of Contents VII
Index of Figures XII
Index of Tables 1
Chapter1 Introduction 2
1.1 Cardiovascular disease is a leading cause of death 2
1.2 Current treatment to heart disease is inadequate 2
1.2.1 Medicine 2
1.2.2 Percutaneous coronary intervention 3
1.2.3 Surgery 3
1.3 Cardiac tissue engineering is a promising approach 4
1.3.1 Cell therapy 5
1.3.2 Growth factor therapy 8
1.3.3 Gene therapy 10
1.4 Challenges of cardiac regeneration 11
1.5 Novel delivery system leads revolutionary pharmaceutical treatment 12
1.6 Self-assembling peptide nanofibers 12
1.7 Overall approach 14
Chapter2 Intramyocardial NF injection improves post-MI ventricular remodeling and efficacy of MNC therapy in pigs 15
2.1 Background 15
2.2 Materials and methods 16
2.2.1 Experimental animals 16
2.2.2 Autologous bone marrow mononuclear cell isolation and DiI labeling 17
2.2.3 Myocardial infarction and treatment 18
2.2.4 Echocardiography 21
2.2.5 Hemodynamics 21
2.2.6 Ratio of necrotic tissue area, length, and thickness measurements 22
2.2.7 Collagen content measurement 22
2.2.8 Immunohistochemistry and fluorescence microscopy 22
2.2.9 Determination of NFs degradation after injection. 23
2.2.10 Blood chemistry 23
2.2.11 Quantitative evaluation of leukocytes 24
2.2.12 Statistical analysis 24
2.3 Results 24
2.3.1 Injection of NFs alone increases interventricular septum thickness, and prevents ventricular remodeling after infarction 24
2.3.2 Injection of NFs along with autologous MNCs improves both systolic and diastolic functions after infarction 32
2.3.3 Injection of NFs along with autologous MNCs decreases necrotic tissue and collagen content in the remote area after infarction 33
2.3.4 Injection of peptide nanofibers along with bone marrow mononuclear cells increases transplanted cell retention and differentiation as well as angiogenesis after infarction 33
2.3.5 Injection of NFs Reduce C-Reactive Protein Levels after Infarction 47
2.4 Discussion 49
2.4.1 Local repair by biomaterial injection preserves cardiac geometry and function 49
2.4.2 Cell retention determines cardiac functional improvement by cell therapy 50
2.4.3 MNC/NF injection has complementary effects for clinical application 50
2.4.4 Mechanisms of MNC Therapy remain to be determined 51
2.5 Summary and future direction 55
Chapter3 Nanofibrous Scaffold with VEGF Creates Intramyocardial Microenvironments for Arteriogenesis and Cardiac Benefits after Infarction 56
3.1 Background 56
3.2 Materials and methods 57
3.2.1 VEGF functional assay 57
3.2.2 NFs/VEGF binding capacity and in vitro releasing kinetics 58
3.2.3 Animals and experimental myocardial infarction 58
3.2.4 Preparation of treatments and in vivo releasing kinetics 58
3.2.5 Therapeutic study and echocardiography 59
3.2.6 Tissue processing and infarct size estimation 59
3.2.7 Fluorescence microscopy and analysis 60
3.2.8 Vascular permeability study 60
3.2.9 Bone marrow cell injection study 61
3.2.10 Cardiomyocyte-specific fate-mapping study 61
3.2.11 Statistical Analysis 62
3.3 Results 62
3.3.1 Intramyocardial NF/VEGF injection achieves sustained VEGF delivery and improves cardiac performance at 28 days after MI 62
3.3.2 NF/VEGF injection promotes both angiogenesis and arteriogenesis at 28 days after MI 70
3.3.3 Local delivery of VEGF along with NFs does not cause systemic harmful effects 75
3.3.4 NF injection recruits α-SMA+ cells and NF/VEGF injection achieves arteriogenesis 78
3.3.5 NF/VEGF injection recruits cardiomyocyte-like cTnI+ small myocytes after MI 84
3.4 Discussion 87
3.4.1 High dosage of VEGF achieves effective angiogenesis but not arteriogenesis and cardiac benefits 87
3.4.2 NFs/VEGF injection creates biomimic microenvironments to enhance therapeutic effects 88
3.4.3 NF/VEGF injection creates a vascular niche for cardiac regeneration 90
3.5 Summary and future direction 91
Chapter4 Conclusion 92
References 93
Curriculum Vitae 110
參考文獻 1. D. Lloyd-Jones, R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, T. B. Ferguson, E. Ford, K. Furie, C. Gillespie, A. Go, K. Greenlund, N. Haase, S. Hailpern, P. M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. M. McDermott, J. Meigs, D. Mozaffarian, M. Mussolino, G. Nichol, V. L. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, T. Thom, S. Wasserthiel-Smoller, N. D. Wong, J. Wylie-Rosett, Heart disease and stroke statistics--2010 update: a report from the American heart association. Circulation 121, e46 (2010).
2. P. C. H. Hsieh, V. F. M. Segers, M. E. Davis, C. MacGillivray, J. Gannon, J. D. Molkentin, J. Robbins, R. T. Lee, Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13, 970 (2007).
3. O. Bergmann, R. D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-Heider, S. Walsh, J. Zupicich, K. Alkass, B. A. Buchholz, H. Druid, S. Jovinge, J. Frisen, Evidence for cardiomyocyte renewal in humans. Science 324, 98 (2009).
4. M. Jessup, S. Brozena, Heart failure. N. Engl. J. Med. 348, 2007 (2003).
5. S. W. M. van den Borne, J. Diez, W. M. Blankesteijn, J. Verjans, L. Hofstra, J. Narula, Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7, 30 (2010).
6. B. I. Jugdutt, Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108, 1395 (2003).
7. J. J. V. McMurray, Systolic heart failure. N. Engl. J. Med. 362, 228 (2010).
8. J. Tamargo, J. López-Sendón, Novel therapeutic targets for the treatment of heart failure. Nat. Rev. Drug Discov. 10, 536 (2011).
9. D. M. Yellon, D. J. Hausenloy, Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121 (2007).
10. B. K. Nallamothu, E. H. Bradley, H. M. Krumholz, Time to treatment in primary percutaneous coronary intervention. N. Engl. J. Med. 357, 1631 (2007).
11. D. R. Holmes, Jr, M. B. Leon, J. W. Moses, J. J. Popma, D. Cutlip, P. J. Fitzgerald, C. Brown, T. Fischell, S. C. Wong, M. Midei, D. Snead, R. E. Kuntz, Analysis of 1-year clinical outcomes in the SIRIUS trial: a randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. Circulation 109, 634 (2004).
12. J. S. Hochman, G. A. Lamas, C. E. Buller, V. Dzavik, H. R. Reynolds, S. J. Abramsky, S. Forman, W. Ruzyllo, A. P. Maggioni, H. White, Z. Sadowski, A. C. Carvalho, J. M. Rankin, J. P. Renkin, P. G. Steg, A. M. Mascette, G. Sopko, M. E. Pfisterer, J. Leor, V. Fridrich, D. B. Mark, G. L. Knatterud, Coronary intervention for persistent occlusion after myocardial infarction. N. Engl. J. Med. 355, 2395 (2006).
13. G. W. Stone, Angioplasty strategies in ST-segment-elevation myocardial infarction: part II: intervention after fibrinolytic therapy, integrated treatment recommendations, and future directions. Circulation 118, 552 (2008).
14. E. L. Hannan, C. Wu, G. Walford, A. T. Culliford, J. P. Gold, C. R. Smith, R. S. D. Higgins, R. E. Carlson, R. H. Jones, Drug-eluting stents vs. coronary-artery bypass grafting in multivessel coronary disease. N. Engl. J. Med. 358, 331 (2008).
15. K. B. Seung, D. W. Park, Y. H. Kim, S. W. Lee, C. W. Lee, M. K. Hong, S. W. Park, S. C. Yun, H. C. Gwon, M. H. Jeong, Y. Jang, H. S. Kim, P. J. Kim, I. W. Seong, H. S. Park, T. Ahn, I. H. Chae, S. J. Tahk, W. S. Chung, S. J. Park, Stents versus coronary-artery bypass grafting for left main coronary artery disease. N. Engl. J. Med. 358, 1781 (2008).
16. P. W. Serruys, M. C. Morice, A. P. Kappetein, A. Colombo, D. R. Holmes, M. J. Mack, E. Ståhle, T. E. Feldman, M. van den Brand, E. J. Bass, N. Van Dyck, K. Leadley, K. D. Dawkins, F. W. Mohr, Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961 (2009).
17. S. Josef, B. E. Leah, Y. K. Anna, A. Paul, D. C. Jason, K. Richard, D. Fabienne, O. R. Axel, I. H. Marshall, The registry of the international society for heart and lung transplantation: twenty-seventh official adult heart transplant report—2010. The Journal of heart and lung transplantation 29, 1089 (2010).
18. D. Choi, K. C. Hwang, K. Y. Lee, Y. H. Kim, Ischemic heart diseases: current treatments and future. J. Controlled Release 140, 194 (2009).
19. M. A. Laflamme, S. Zbinden, S. E. Epstein, C. E. Murry, Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu. Rev. Pathol.-Mech. Dis. 2, 307 (2007).
20. R. Passier, L. W. van Laake, C. L. Mummery, Stem-cell-based therapy and lessons from the heart. Nature 453, 322 (2008).
21. F. Wang, J. Guan, Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Del. Rev. 62, 784 (2010).
22. P. Tayalia, D. J. Mooney, Controlled growth factor delivery for tissue engineering. Adv. Mater. 21, 3269 (2009).
23. D. Marelli, C. Desrosiers, M. el-Alfy, R. Kao, R. Chiu, Cell transplantation for myocardial repair: an experimental approach. Cell Transplant. 6, 383 (1992).
24. M. S. Parmacek, J. A. Epstein, Cardiomyocyte renewal. N. Engl. J. Med. 361, 86 (2009).
25. M. Krane, O. Wernet, S. M. Wu, Promises and pitfalls in cell replacement therapy for heart failure. Drug Discovery Today: Disease Mechanisms 7, e109 (2010).
26. P. Menasché, O. Alfieri, S. Janssens, W. McKenna, H. Reichenspurner, L. Trinquart, J.-T. Vilquin, J.-P. Marolleau, B. Seymour, J. Larghero, S. Lake, G. Chatellier, S. Solomon, M. Desnos, A. A. Hagege, The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117, 1189 (2008).
27. A. Moretti, L. Caron, A. Nakano, J. T. Lam, A. Bernshausen, Y. Chen, Y. Qyang, L. Bu, M. Sasaki, S. Martin Puig, Y. Sun, S. M. Evans, K. L. Laugwitz, K. R. Chien, Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151 (2006).
28. L. Bu, X. Jiang, S. Martin Puig, L. Caron, S. Zhu, Y. Shao, D. J. Roberts, P. L. Huang, I. J. Domian, K. R. Chien, Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460, 113 (2009).
29. S. J. Kattman, T. L. Huber, Gordon M. Keller, Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11, 723 (2006).
30. A. Moreno-Gonzalez, F. S. Korte, J. Dai, K. Chen, B. Ho, H. Reinecke, C. E. Murry, M. Regnier, Cell therapy enhances function of remote non-infarcted myocardium. J. Mol. Cell. Cardiol. 47, 603 (2009).
31. M. Breitbach, T. Bostani, W. Roell, Y. Xia, O. Dewald, J. M. Nygren, J. W. U. Fries, K. Tiemann, H. Bohlen, J. Hescheler, A. Welz, W. Bloch, S. E. W. Jacobsen, B. K. Fleischmann, Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362 (2007).
32. S. Ghostine, C. Carrion, L. C. G. Souza, P. Richard, P. Bruneval, J.-T. Vilquin, B. Pouzet, K. Schwartz, P. Menasché, A. A. Hagege, Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106, I (2002).
33. Y. D. Lin, M. L. Yeh, Y. J. Yang, D. C. Tsai, T. Y. Chu, Y. Y. Shih, M. Y. Chang, Y. W. Liu, A. C. L. Tang, T. Y. Chen, C. Y. Luo, K. C. Chang, J. H. Chen, H. L. Wu, T. K. Hung, P. C. H. Hsieh, Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation 122, S132 (2010).
34. B. E. Strauer, M. Brehm, T. Zeus, M. Kostering, A. Hernandez, R. V. Sorg, G. Kogler, P. Wernet, Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913 (2002).
35. T. Kinnaird, E. Stabile, M. S. Burnett, C. W. Lee, S. Barr, S. Fuchs, S. E. Epstein, Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678 (2004).
36. G. P. Meyer, K. C. Wollert, J. Lotz, J. Steffens, P. Lippolt, S. Fichtner, H. Hecker, A. Schaefer, L. Arseniev, B. Hertenstein, A. Ganser, H. Drexler, Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113, 1287 (2006).
37. C. E. Murry, M. H. Soonpaa, H. Reinecke, H. Nakajima, H. O. Nakajima, M. Rubart, K. B. S. Pasumarthi, J. Ismail Virag, S. H. Bartelmez, V. Poppa, G. Bradford, J. D. Dowell, D. A. Williams, L. J. Field, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664 (2004).
38. L. B. Balsam, A. J. Wagers, J. L. Christensen, T. Kofidis, I. L. Weissman, R. C. Robbins, Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668 (2004).
39. B. Assmus, V. Schachinger, C. Teupe, M. Britten, R. Lehmann, N. Dobert, F. Grunwald, A. Aicher, C. Urbich, H. Martin, D. Hoelzer, S. Dimmeler, A. M. Zeiher, Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009 (2002).
40. J. R. Frederick, J. R. Fitzpatrick, III, R. C. McCormick, D. A. Harris, A. Y. Kim, J. R. Muenzer, N. Marotta, M. J. Smith, J. E. Cohen, W. Hiesinger, P. Atluri, Y. J. Woo, Stromal cell-derived factor-1α activation of tissue-engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis. Circulation 122, S107 (2010).
41. H. Oh, S. B. Bradfute, T. D. Gallardo, T. Nakamura, V. Gaussin, Y. Mishina, J. Pocius, L. H. Michael, R. R. Behringer, D. J. Garry, M. L. Entman, M. D. Schneider, Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. U. S. A. 100, 12313 (2003).
42. K. Matsuura, A. Honda, T. Nagai, N. Fukushima, K. Iwanaga, M. Tokunaga, T. Shimizu, T. Okano, H. Kasanuki, N. Hagiwara, I. Komuro, Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J. Clin. Invest. 119, 2204 (2009).
43. O. Pfister, F. Mouquet, M. Jain, R. Summer, M. Helmes, A. Fine, W. S. Colucci, R. Liao, CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res. 97, 52 (2005).
44. S. Fazel, M. Cimini, L. Chen, S. Li, D. Angoulvant, P. Fedak, S. Verma, R. D. Weisel, A. Keating, R. K. Li, Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest. 116, 1865 (2006).
45. A. P. Beltrami, L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H. Kasahara, M. Rota, E. Musso, K. Urbanek, A. Leri, J. Kajstura, B. Nadal-Ginard, P. Anversa, Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763 (2003).
46. I. Chimenti, R. R. Smith, T. S. Li, G. Gerstenblith, E. Messina, A. Giacomello, E. Marban, Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 106, 971 (2010).
47. P. V. Johnston, T. Sasano, K. Mills, R. Evers, S. T. Lee, R. R. Smith, A. C. Lardo, S. Lai, C. Steenbergen, G. Gerstenblith, R. Lange, E. Marban, Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120, 1075 (2009).
48. R. R. Smith, L. Barile, H. C. Cho, M. K. Leppo, J. M. Hare, E. Messina, A. Giacomello, M. R. Abraham, E. Marban, Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896 (2007).
49. D. C. Andersen, P. Andersen, M. Schneider, H. B. Jensen, S. P. Sheikh, Murine "cardiospheres" are not a source of stem cells with cardiomyogenic potential. Stem Cells 27, 1571 (2009).
50. M. A. Laflamme, K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate, S. K. Dupras, H. Reinecke, C. Xu, M. Hassanipour, S. Police, C. O'Sullivan, L. Collins, Y. Chen, E. Minami, E. A. Gill, S. Ueno, C. Yuan, J. Gold, C. E. Murry, Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015 (2007).
51. I. Kehat, L. Khimovich, O. Caspi, A. Gepstein, R. Shofti, G. Arbel, I. Huber, J. Satin, J. Itskovitz-Eldor, L. Gepstein, Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282 (2004).
52. T. J. Nelson, A. Martinez-Fernandez, S. Yamada, C. Perez-Terzic, Y. Ikeda, A. Terzic, Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120, 408 (2009).
53. Y. N. Tallini, K. S. Greene, M. Craven, A. Spealman, M. Breitbach, J. Smith, P. J. Fisher, M. Steffey, M. Hesse, R. M. Doran, A. Woods, B. Singh, A. Yen, B. K. Fleischmann, M. I. Kotlikoff, c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc. Natl. Acad. Sci. U. S. A. 106, 1808 (2009).
54. K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663 (2006).
55. N. Sun, M. T. Longaker, J. C. Wu, Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle 9, 880 (2010).
56. E. Ruvinov, J. Leor, S. Cohen, The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31, 4573 (2010).
57. S. Banai, M. Jaklitsch, M. Shou, D. Lazarous, M. Scheinowitz, S. Biro, S. Epstein, E. Unger, Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89, 2183 (1994).
58. T. D. Henry, B. H. Annex, G. R. McKendall, M. A. Azrin, J. J. Lopez, F. J. Giordano, P. K. Shah, J. T. Willerson, R. L. Benza, D. S. Berman, C. M. Gibson, A. Bajamonde, A. C. Rundle, J. Fine, E. R. McCluskey, for the VIVA Investigators, The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107, 1359 (2003).
59. V. F. M. Segers, T. Tokunou, L. J. Higgins, C. MacGillivray, J. Gannon, R. T. Lee, Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116, 1683 (2007).
60. H. Lu, X. Xu, M. Zhang, R. Cao, E. Bråkenhielm, C. Li, H. Lin, G. Yao, H. Sun, L. Qi, M. Tang, H. Dai, Y. Zhang, R. Su, Y. Bi, Y. Zhang, Y. Cao, Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc. Natl. Acad. Sci. U. S. A. 104, 12140 (2007).
61. P. C. H. Hsieh, M. E. Davis, J. Gannon, C. MacGillivray, R. T. Lee, Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116, 237 (2006).
62. P. C. H. Hsieh, C. MacGillivray, J. Gannon, F. U. Cruz, R. T. Lee, Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114, 637 (2006).
63. M. E. Davis, P. C. H. Hsieh, T. Takahashi, Q. Song, S. Zhang, R. D. Kamm, A. J. Grodzinsky, P. Anversa, R. T. Lee, Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. U. S. A. 103, 8155 (2006).
64. S. Ylä-Herttuala, T. T. Rissanen, I. Vajanto, J. Hartikainen, Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J. Am. Coll. Cardiol. 49, 1015 (2007).
65. R. Morishita, M. Aoki, Y. Yo, T. Ogihara, Hepatocyte growth factor as cardiovascular hormone: role of HGF in the pathogenesis of cardiovascular disease. Endocr. J. 49, 273 (2002).
66. R. Khurana, M. Simons, Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc. Med. 13, 116 (2003).
67. R. C. Kaplan, H. D. Strickler, T. E. Rohan, R. Muzumdar, D. L. Brown, Insulin-like growth factors and coronary heart disease. Cardiol. Rev. 13, 35 (2005).
68. R. V. Hoch, P. Soriano, Roles of PDGF in animal development. Development 130, 4769 (2003).
69. S. K. Ghadge, S. Mühlstedt, C. Özcelik, M. Bader, SDF-1α as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol. Ther. 129, 97 (2010).
70. N. Ferrara, H.-P. Gerber, J. LeCouter, The biology of VEGF and its receptors. Nat. Med. 9, 669 (2003).
71. N. Ferrara, Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581 (2004).
72. T. Tammela, B. Enholm, K. Alitalo, K. Paavonen, The biology of vascular endothelial growth factors. Cardiovasc. Res. 65, 550 (2005).
73. S. Ylä-Herttuala, K. Alitalo, Gene transfer as a tool to induce therapeutic vascular growth. Nat. Med. 9, 694 (2003).
74. M. Huang, D. A. Chan, F. Jia, X. Xie, Z. Li, G. Hoyt, R. C. Robbins, X. Chen, A. J. Giaccia, J. C. Wu, Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118, S226 (2008).
75. M. Huang, Z. Chen, S. Hu, F. Jia, Z. Li, G. Hoyt, R. C. Robbins, M. A. Kay, J. C. Wu, Novel minicircle vector for gene therapy in murine myocardial infarction. Circulation 120, S230 (2009).
76. S. P. Jones, J. J. M. Greer, A. K. Kakkar, P. D. Ware, R. H. Turnage, M. Hicks, R. van Haperen, R. de Crom, S. Kawashima, M. Yokoyama, D. J. Lefer, Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 286, H276 (2004).
77. O. Tenhunen, Y. Soini, M. Ilves, J. Rysä, J. Tuukkanen, R. Serpi, H. Pennanen, H. Ruskoaho, H. Leskinen, p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and anti-apoptotic mechanisms. FASEB J. 20, 1907 (2006).
78. N. Somia, I. M. Verma, Gene therapy: trials and tribulations. Nat. Rev. Genet. 1, 91 (2000).
79. F. J. Giordano, P. Ping, M. D. McKirnan, S. Nozaki, A. N. Demaria, W. H. Dillmann, O. Mathieu-Costello, H. K. Hammond, Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat. Med. 2, 534 (1996).
80. Y. Li, G. Takemura, K. i. Kosai, K. Yuge, S. Nagano, M. Esaki, K. Goto, T. Takahashi, K. Hayakawa, M. Koda, Y. Kawase, R. Maruyama, H. Okada, S. Minatoguchi, H. Mizuguchi, T. Fujiwara, H. Fujiwara, Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice. Circulation 107, 2499 (2003).
81. H. Leong-Poi, M. A. Kuliszewski, M. Lekas, M. Sibbald, K. Teichert-Kuliszewska, A. L. Klibanov, D. J. Stewart, J. R. Lindner, Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ. Res. 101, 295 (2007).
82. J. C. Wu, I. Y. Chen, G. Sundaresan, J. J. Min, A. De, J. H. Qiao, M. C. Fishbein, S. S. Gambhir, Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108, 1302 (2003).
83. V. F. Segers, R. T. Lee, Stem-cell therapy for cardiac disease. Nature 451, 937 (2008).
84. C. R. Ozawa, A. Banfi, N. L. Glazer, G. Thurston, M. L. Springer, P. E. Kraft, D. M. McDonald, H. M. Blau, Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest. 113, 516 (2004).
85. M. Lavu, S. Gundewar, D. J. Lefer, Gene therapy for ischemic heart disease. J. Mol. Cell. Cardiol. 50, 742 (2010).
86. E. Chavakis, M. Koyanagi, S. Dimmeler, Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation 121, 325 (2010).
87. N. Huebsch, D. J. Mooney, Inspiration and application in the evolution of biomaterials. Nature 462, 426 (2009).
88. L. C. Karen, J. L. Randall, Biomaterials for the treatment of myocardial infarction. J. Am. Coll. Cardiol. 48, 907 (2006).
89. Z. Ye, Y. Zhou, H. Cai, W. Tan, Myocardial regeneration: roles of stem cells and hydrogels. Adv. Drug Del. Rev. In Press, Corrected Proof, (2011).
90. K. Lee, E. A. Silva, D. J. Mooney, Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of The Royal Society Interface, (2010).
91. S. Zhang, Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171 (2003).
92. X. Zhao, F. Pan, H. Xu, M. Yaseen, H. Shan, C. A. E. Hauser, S. Zhang, J. R. Lu, Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 39, 3480 (2010).
93. C. A. E. Hauser, S. Zhang, Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev. 39, 2780 (2010).
94. S. Zhang, Beyond the petri dish. Nat. Biotechnol. 22, 151 (2004).
95. M. M. Stevens, J. H. George, Exploring and engineering the cell surface interface. Science 310, 1135 (2005).
96. V. F. Segers, R. T. Lee, Local delivery of proteins and the use of self-assembling peptides. Drug Discov. Today 12, 561 (2007).
97. S. Koutsopoulos, L. D. Unsworth, Y. Nagai, S. Zhang, Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc. Natl. Acad. Sci. U. S. A. 106, 4623 (2009).
98. F. Gelain, L. D. Unsworth, S. Zhang, Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J. Controlled Release 145, 231 (2010).
99. M. E. Davis, P. C. H. Hsieh, A. J. Grodzinsky, R. T. Lee, Custom design of the cardiac microenvironment with biomaterials. Circ. Res. 97, 8 (2005).
100. W. Dai, L. E. Wold, J. S. Dow, R. A. Kloner, Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction. J. Am. Coll. Cardiol. 46, 714 (2005).
101. S. T. Wall, J. C. Walker, K. E. Healy, M. B. Ratcliffe, J. M. Guccione, Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114, 2627 (2006).
102. N. Landa, L. Miller, M. S. Feinberg, R. Holbova, M. Shachar, I. Freeman, S. Cohen, J. Leor, Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 117, 1388 (2008).
103. M. E. Davis, J. P. M. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. Zhang, R. T. Lee, Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111, 442 (2005).
104. F. B. Engel, P. C. H. Hsieh, R. T. Lee, M. T. Keating, FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl. Acad. Sci. U. S. A. 103, 15546 (2006).
105. M. Hofmann, K. C. Wollert, G. P. Meyer, A. Menke, L. Arseniev, B. Hertenstein, A. Ganser, W. H. Knapp, H. Drexler, Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111, 2198 (2005).
106. M. A. Laflamme, C. E. Murry, Regenerating the heart. Nat. Biotechnol. 23, 845 (2005).
107. H. Sekine, T. Shimizu, K. Hobo, S. Sekiya, J. Yang, M. Yamato, H. Kurosawa, E. Kobayashi, T. Okano, Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118, S145 (2008).
108. H. C. Quevedo, K. E. Hatzistergos, B. N. Oskouei, G. S. Feigenbaum, J. E. Rodriguez, D. Valdes, P. M. Pattany, J. P. Zambrano, Q. Hu, I. McNiece, A. W. Heldman, J. M. Hare, Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. U. S. A. 106, 14022 (2009).
109. D. W. Park, S. C. Yun, J. Y. Lee, W. J. Kim, S. J. Kang, S. W. Lee, Y. H. Kim, C. W. Lee, J. J. Kim, S. W. Park, S. J. Park, C-reactive protein and the risk of stent thrombosis and cardiovascular events after drug-eluting stent implantation. Circulation 120, 1987 (2009).
110. D. A. Narmoneva, R. Vukmirovic, M. E. Davis, R. D. Kamm, R. T. Lee, Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110, 962 (2004).
111. P. C. H. Hsieh, M. E. Davis, L. K. Lisowski, R. T. Lee, Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu. Rev. Physiol. 68, 51 (2006).
112. M. Simons, J. A. Ware, Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug Discov. 2, 863 (2003).
113. L. Coultas, K. Chawengsaksophak, J. Rossant, Endothelial cells and VEGF in vascular development. Nature 438, 937 (2005).
114. A.-K. Olsson, A. Dimberg, J. Kreuger, L. Claesson-Welsh, VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359 (2006).
115. G. von Degenfeld, A. Banfi, M. L. Springer, R. A. Wagner, J. Jacobi, C. R. Ozawa, M. J. Merchant, J. P. Cooke, H. M. Blau, Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J. 20, 2657 (2006).
116. P. Carmeliet, Angiogenesis in health and disease. Nat. Med. 9, 653 (2003).
117. R. K. Jain, Molecular regulation of vessel maturation. Nat. Med. 9, 685 (2003).
118. T. P. Richardson, M. C. Peters, A. B. Ennett, D. J. Mooney, Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029 (2001).
119. N. Koike, D. Fukumura, O. Gralla, P. Au, J. S. Schechner, R. K. Jain, Tissue engineering: creation of long-lasting blood vessels. Nature 428, 138 (2004).
120. M. H. Kim, F. E. Curry, S. I. Simon, Dynamics of neutrophil extravasation and vascular permeability are uncoupled during aseptic cutaneous wounding. Am. J. Physiol. Cell Physiol. 296, C848 (2009).
121. M. J. Frontini, Z. Nong, R. Gros, M. Drangova, C. O'Neil, M. N. Rahman, O. Akawi, H. Yin, C. G. Ellis, J. G. Pickering, Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat. Biotechnol. 29, 421 (2011).
122. L. G. Griffith, M. A. Swartz, Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211 (2006).
123. D. E. Discher, D. J. Mooney, P. W. Zandstra, Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673 (2009).
124. M. P. Lutolf, P. M. Gilbert, H. M. Blau, Designing materials to direct stem-cell fate. Nature 462, 433 (2009).
125. M. P. Lutolf, J. A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47 (2005).
126. H. J. Kong, D. J. Mooney, Microenvironmental regulation of biomacromolecular therapies. Nat. Rev. Drug Discov. 6, 455 (2007).
127. L. Ferreira, J. M. Karp, L. Nobre, R. Langer, New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3, 136 (2008).
128. K. R. Chien, I. J. Domian, K. K. Parker, Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science 322, 1494 (2008).
129. E. S. Place, N. D. Evans, M. M. Stevens, Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457 (2009).
130. T. Dvir, B. P. Timko, D. S. Kohane, R. Langer, Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6, 13 (2011).
131. J. J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R. A. Brown, Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349 (2002).
132. M. Grunewald, I. Avraham, Y. Dor, E. Bachar-Lustig, A. Itin, S. Yung, S. Chimenti, L. Landsman, R. Abramovitch, E. Keshet, VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175 (2006).
133. O. Cleaver, D. A. Melton, Endothelial signaling during development. Nat. Med. 9, 661 (2003).
134. S. Levenberg, J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. van Blitterswijk, R. C. Mulligan, P. A. D'Amore, R. Langer, Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879 (2005).
135. E. C. Novosel, C. Kleinhans, P. J. Kluger, Vascularization is the key challenge in tissue engineering. Adv. Drug Del. Rev. 63, 300 (2011).
136. S. Yoshida, M. Sukeno, Y. Nabeshima, A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722 (2007).
137. M. Tavazoie, L. Van der Veken, V. Silva-Vargas, M. Louissaint, L. Colonna, B. Zaidi, J. M. Garcia-Verdugo, F. Doetsch, A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279 (2008).
138. J. M. Butler, D. J. Nolan, E. L. Vertes, B. Varnum-Finney, H. Kobayashi, A. T. Hooper, M. Seandel, K. Shido, I. A. White, M. Kobayashi, L. Witte, C. May, C. Shawber, Y. Kimura, J. Kitajewski, Z. Rosenwaks, I. D. Bernstein, S. Rafii, Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251 (2010).
139. B. S. Ding, D. J. Nolan, J. M. Butler, D. James, A. O. Babazadeh, Z. Rosenwaks, V. Mittal, H. Kobayashi, K. Shido, D. Lyden, T. N. Sato, S. Y. Rabbany, S. Rafii, Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310 (2010).
140. M. Gnecchi, Z. Zhang, A. Ni, V. J. Dzau, Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103, 1204 (2008).
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-18起公開。

  • 如您有疑問,請聯絡圖書館