進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1807201110474400
論文名稱(中文) 超臨界二氧化碳–水–長石系統之礦物及化學反應
論文名稱(英文) Mineral and chemical reactions in the supercritical CO2-water-feldspar system
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 99
學期 2
出版年 100
研究生(中文) 張堯婷
研究生(英文) Yao-Ting Chang
學號 l46984022
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 指導教授-楊懷仁
口試委員-何恭算
口試委員-蕭炎宏
中文關鍵字 長石  超臨界二氧化碳  二氧化碳封存 
英文關鍵字 feldspar  supercritical carbon dioxide  carbon dioxide sequestration 
學科別分類
中文摘要 長石為地殼含量最多且易於風化及蝕變的礦物,水及二氧化碳則是主要使長石風化、蝕變的介質,因此長石-水-二氧化碳間的反應是(接近)地表環境中物質與元素循環的重要一環。在一般地質環境中,水對長石的蝕變效應較二氧化碳對長石的影響強,但在特殊二氧化碳地質封存環境中,二氧化碳之角色愈趨重要,因二氧化碳注入於1-2公里深之砂岩層中會成為超臨界態,上升速率緩慢,不易重返地表,但對封存地層溶解度增加,為長期封存增添變數。又封存砂岩層中,長石為主要易反應礦物,本研究因而以長石與水及超臨界二氧化碳反應,探討封存場址可能產生之礦物及化學反應變化,期對封存成效及安全性提供評估參數。
由長石與水於100℃-1.03 kg/cm2(1 atm)下反應結果顯示,長石中主要陽離子溶入水中之溶解量有顯著差異,鉀相對於鈣、鈉難溶於水中,表明鉀具有不易溶出之特性,將此現象稱為“元素特性效應”;長石內濃度低之元素則有相對較高的溶解度,將此現象稱為“微量成分效應”。於長石-水系統中加入二氧化碳,在45℃-300 kg/cm2與100℃-180 kg/cm2下,長石內鈣、鉀溶解度相對在長石-水系統中之所得值高,鈣溶解度提升尤其顯著(6-75倍),且鈣-鈉長石與鈉-鈣長石反應後沉澱次生碳酸鈣,表明超臨界二氧化碳於系統中可轉化為穩定礦物相,但可能減少封存岩層之孔隙率,是評估封存成效之重要依據。由兩組不同反應溫度之長石-水-二氧化碳實驗顯示,溫度增加50℃,長石內矽、鈉於水中的溶解度提升2-5倍,但溫度效應隨時間增長而減弱,二氧化碳效應則漸為主控因子,指示二氧化碳對長石溶解的長期效應。且由實驗結果顯示,若封存環境為開放系統,水流攜出長石溶入水中之離子,礦物內陽離子具有高溶解度;於封閉系統中,長石溶入水中之陽離子逐漸於水溶液中達飽和,而降低長石溶解速率。礦物沉澱效應與溶解效應對封存成效有相反的作用,兩種效應互相抵銷下,對二氧化碳地質封存整體的影響性仍有待評估。
英文摘要 Feldspar is the most abundant and readily decomposed mineral in upper crust, whereas water and CO2 are the major agents responsible for feldspar decomposition. Therefore, the interaction among feldspar, water and CO2 plays a critical role on cycling materials and elements in crust. In general, the effect of water on feldspar decomposition prevails, because of its relatively high abundance in most geological environment. However, the role of CO2 becomes dominant in CO2 sequestration formations where the injected CO2 transforms into supercritical state. Although it migrates slowly; unlikely to return to surface, the dense supercritical CO2 becomes more reactive to host rocks, imposing uncertainty on long-term CO2 sequestration. As feldspar is the major constituting mineral in CO2 sequestration formations, reaction experiments were carried out to compare chemical and mineral changes in the feldspar-water and feldspar-water-supercritical CO2 systems to provide key parameters for evaluating safety and effectiveness of CO2 geological sequestration.
The feldspar-water interaction experiments at 100℃ and 1.03 kg/cm2show that major constituent elements in feldspar behave differently during feldspar decomposition. Compared to Ca and Na, K prefers to retain in feldspar, a feature referred to as “element characteristic effect”. However, when element concentration in feldspar is considered, the solubility of low abundance elements is higher than that of higher ones, a feature referred to as “trace element effect”. Addition of supercritical CO2 into the feldspar-water system at 45℃-300 kg/cm2 and 100℃-180 kg/cm2 elevates the solubility of Na, K, and especially Ca (factors of 6-75). Meanwhile, calcium carbonate precipitated from solutions in the experiments involving plagioclase (Na-Ca solid-solution of feldspar), revealing the possibility of mineral sequestration with reduction in porosity for sequestration. The feldspar-water-supercritical CO2 experiments also show that an increase of 50℃ in temperature lead to increases in the solubility of feldspar Si and Na in water by factors of 2-5. As the reaction time increases, the effect of temperature on feldspar dissolution decreases and that of supercritical CO2 increases, indicating the long-term effect of supercritical CO2 on the sequestration environment. Based on the results from these experiments, it is predicted that in an open system water could keep bringing out the dissolved constituents from feldspar, resulting in higher dissolution rates for feldspar. In contrast, relatively lower extents of feldspar dissolution are predicted in a close system, in which water could reach saturation with the constituents from feldspar, limiting the extent of feldspar dissolution. Superimposed on feldspar dissolution is the effect of carbonate precipitation varying sequestration capacity. The overall effects of feldspar dissolution and carbonate precipitation on CO2 geological sequestration remain to be precisely quantified.
論文目次 摘要 Ⅰ
Abstract Ⅱ
誌謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅷ
圖目錄 Ⅸ

第一章 序論 1
1.1 長石、三大岩類與地殼 1
1.2 影響長石蝕變之因素 5
1.3 二氧化碳與長石 6
1.4 二氧化碳地質封存 9
1.5 文獻回顧 12
1.6 研究目的 14

第二章 研究方法 15
2.1 實驗流程與代號說明 15
2.1.1 實驗流程 15
2.1.2 代號說明 17
2.2 實驗材料與反應條件 18
2.2.1 礦物樣品與製備 18
2.2.2 實驗反應參數 19
2.3 二氧化碳實驗設備與對照組 20
2.3.1 封閉式反應容器(cardice pressurized reaction cell,CPRC) 20
2.3.2 注入式反應容器(injection pressurized reaction cell,IPRC) 22
2.3.3 對照組(experimental reference group,ERG) 24
2.4 酸溶處理與消化步驟 24
2.5 分析儀器 25
2.5.1 掃描式電子顯微鏡(SEM) 25
2.5.2 感應耦合電漿光學放射光譜儀(ICP-OES) 26

第三章 實驗分析結果 27
3.1 長石成分:EDS原位點成分分析及ICP-OES全礦物成分分析結果 27
3.2 長石-水於100℃-1.03 kg/cm2反應後,水樣成分分析結果 33
3.3 長石-水-二氧化碳於100℃-180 kg/cm2反應後,水樣成分分析結果 37
3.3.1 反應後水成分變化與反應時間之關係 37
3.3.2 反應後水成分變化與長石成分之關係 41
3.4 長石-水-二氧化碳於45℃-300 kg/cm2反應後,水樣成分分析結果 44
3.4.1 反應後水成分變化與反應時間之關係 44
3.4.2 反應後水成分變化與長石成分之關係 48
3.5 長石-水系統與長石-水-二氧化碳系統中的水成分變化差異 51
3.5.1 相同溫度下,長石-水系統與加入二氧化碳後(CPRC)的水成分變化 51
3.5.2 兩組溫壓條件之長石-水-二氧化碳系統中,反應後水成分差異 53
3.6 長石與水及二氧化碳於100℃-180 kg/cm2反應後,其SE影像及EDS定性分析 55
3.6.1 正長石Or-1 55
3.6.2 正長石Or-2 57
3.6.3 倍長石 60
3.6.4 奧長石 62

第四章 討論 65
4.1 長石與水及大氣反應後,水成分變化 65
4.2 超臨界二氧化碳對長石於水中溶解度之影響 70
4.3 長石-水-超臨界二氧化碳系統中,溫度(與壓力)對長石於水中溶解度之影響 72
4.4 溫度、壓力、溶劑成分-pH與二氧化碳對長石及砂岩主要陽離子溶出速率之影響 74
4.4.1 以溶出速率討論之必要性 74
4.4.2 長石於鹼性環境與長石-水-二氧化碳反應實驗結果之相關性 75
4.4.3 長石於酸性環境中反應及加入二氧化碳後實驗結果之相關性 75
4.4.4 長石-水-二氧化碳與長石(砂岩)-鹵水反應實驗結果之相關性 76
4.4.5 長石-水-二氧化碳與砂岩-鹵水-二氧化碳反應實驗結果之相關性 77
4.5 形成次生碳酸鹽與黏土礦物的可能因素 86
4.6 長石-水-超臨界二氧化碳反應之碳酸鈣沉澱對二氧化碳封存成效之影響 89

第五章 結論 90

參考文獻 92
參考文獻 Benson, S.M. & Cole, D.R., CO2 sequestration in deep sedimentary formations. Element 4, 325-331 (2008).
Berg, A. & Banwart, S.A., Carbon dioxide mediated dissolution of Ca-feldspar: implications for silicate weathering. Chemical Geology 163, 25-42 (2000).
Birch, F., ed, Handbook of physical constants, Ceological Society of Ameruca, Special Paper 36 (1942).
Blum, A.E., Feldspars in weathering, in: I. Parsons (Ed.), Feldspars and their Reactions, NATO ASI Series, C421, Kluwer Academic Publishers, Dordrecht, 595-630 (1994).
Brady, P.V. & Walther, J.V., Controls on silicate dissolution rates in neutral and basic pH solutions at 25℃. Geochim. Cosmochim. Acta 53, 2823-2830 (1989).
Burger, D., Relative weatherability of calcium-containing minerals. Can. Jour. Soil Sci., 49, 21-28 (1969).
Carroll, S.A. & Knauss, K.G., Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq), and temperature. Chemical Geology 217, 213-225 (2005).
Casey, W.H., Westrich, H.R. & Amold, G.W., Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH=2, 3, and 12. Geochim. Cosmochim. Acta 52, 2795-2807 (1988).
Casey, W.H., Westrich, H.R. & Amold, G.W., Dissolution rates of plagioclase at pH=2 and 3. Amer. Mineral. 76, 211-217 (1991).
Chen, Q.Y., Johnson, D.C., Zhu, L.Y., Yuan, M.H. & Hills, C.D., Accelerated carbonation and leaching behavior of the slag from iron and steel making industry. Journal of University of Science and Technology Beijing 14, 297-301 (2007).
Chou, L. & Wollast, R., Steady-state kinetics and dissolution mechanism of albite. Amer. J. Sci. 285, 963-993 (1985).
Clarke, F.W. & Washington, H.S., The composition of the Earth’s crust, U.S. Geological Survey, Professional Paper 127, 117 (1924).
Fu, Q., Lu, P., Konishi, H., Dilmore, R., Xu., H. Seyfried, W.E. Jr. & Zhu, C., Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch systems: 1. New experiments at 200 °C and 300 bars. Chemical Geology 258, 125-135 (2009).
Gaus, I., Azaroual, M. & Czernichowski-Lauriol, I., Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chemical Geology 217, 319-337 (2005).
Goldich S.S., A study in rock weathering. J. Geol. 46, 17-58 (1938).
Gunter, W.D., Perkins, E.H. & McCann, T.J. Aquifer disposal of rich gases: reaction design for added capacity. Energy Conversion Management 34, 941-948 (1993).
Gunter, W.D., Wiwchar, B. & Perkins, E.H., Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Mineral. Petrol. 59, 121-140 (1997).
Gunter, W.D., Perkins, E.H. & Hutcheon, I., Aquifer disposal of acid gases; modeling of water-rock reactions for trapping of acid gases. Appl. Geochem. 15, 1085-1095 (2000).
Hangx, S.J.T. & Spiers, C.J., Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chemical Geology 265, 88-98 (2009).
Herzog, H.J., Drake, E., Tester, J. & Rosenthal, R., A Research Needs Assessment for the Capture, Utilization, and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants, DOE/ER-30194, US Department of Energy, Washington, DC (1993).
Holdren, G.R., Jr. & Speyer, P.M., Reaction rate-surface area relationships during the early stages of weathering:Ⅱ. Data on eight additional feldspar. Geochim. Cosmochim. Acta 51, 2311-2318 (1987).
Huang, W.H. & Keller, W.D., Dissolution of rock-forming silicate minerals in organic acids: Simulated first-stage weathering of fresh mineral surfaces. Amer. Mineral. 55, 2076-2094 (1970).
IPCC, Underground geological storage. In: Metz, B., Davidson, O., de Coninck, HC., Loos, M. & Meyer, L.A. (eds) IPCC Special Report on Carbon Dioxide Capture and Storage, prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, USA (2005).
Johnson, J.W., Nitao, J.J. & Morris, J.P., Reactive transport modeling of cap rock integrity during natural and engineered CO2 storage, Carbon Dioxide Capture for Storage in Deep Geologic Formation-Results from the CO2 Capture Project. V. 2: Geologic Storage of Carbon Dioxide with Monitoring and Verification. S.M. Benson (ed.), Elsevier Science, London, pp. 787-814 (2005).
Kaszuba, J.P., Janecky, D.R. & Snow, M.G., Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200 bars: implications for geologic sequestration of carbon. Applied Geochemistry 18, 1065-1080 (2003).
Kaszuba, J.P., Janecky, D.R. & Snow, M.G., Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository. Chemical Geology 217, 277-293 (2005).
Karstad, O., Geological Storage, Including Costs and Risks, in Saline Aquifers. IPCC (2002).
Ketzer, J.M., Iglesias, R., Einloft, S., Dullius, J., Ligabue, R. & Lima V. de, Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil. Applied Geochemistry, 24, 760-767 (2009).
Lagneau, V., Pipart, A. & Catalette, H., Reactive transport modeling of CO2 sequestration in deep saline aquifers. Oil Gas Sci. Technol. 60, 231-247 (2005).
Lindeberg, E. & Bergmo, P., The long-term fate of CO2 injected into an aquifer. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6), J. Gate and Y. Kaya (eds.), 1-4 October 2002, Kyoto, Japan, Pergamon, v. 1, 489-494 (2003).
Locati, F., Marfil, S., Baldo, E. & Maiza, P., Na2O, K2O, SiO2 and Al2O3 release from potassic and calcic-sodic feldspars into alkaline solutions. Cement and Concrete Research 40, 1189-1196 (2010).
Lu, J., Partin, J.W., Hovorka, S.D. & Wong, C., Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment. Environ Earth Sci. 60, 335-348 (2010).
Lu, P., Fu, Q., Seyfried W.E. Jr, Hereford, A. & Zhu, C., Navajo Sandstone-brine-CO2 interaction: implications for geological carbon sequestration. Environ Earth Sci. 62, 101-118 (2011).
Lu, H.Y., Lin, C.K. Lin, W., Liou, T.S., Chen, W.F. & Chang, P.Y., A natural analogue for CO2 mineral sequestration in Miocene basalt in the Kuanhsi-Chutung area, Northwestern Taiwan.International Journal of Greenhouse Gas Control (2011, in press).
Reid, R.C., Prausnitz, J. M. & Poling, B. E., The Properties of Gases and Liquids, 4th ed., McGraw-Hill book co., New York, (1987).
Sorai, M., Ohsumi, T., Ishikawa, M. & Tsukamoto, K.,Feldspar dissolution rates measured usikng phase-shift interfermetry: Implications to CO2 underground sequestration. Appl. Geochem.22, 2759-2809 (2007).
Streit, J., Siggins, A. & Evans, B., Predicting and monitoring geomechanical effects of CO2 injection, Carbon Dioxide Capture for Storage in Deep Geologic Formation-Results from the CO2 Capture Project. V. 2: Geologic Storage of Carbon Dioxide with Monitoring and Verification. S.M. Benson (ed.), Elsevier Science, London, pp. 751-766 (2005).
Worden, R.H. & Barclay, S.A., Internally-sourced quartz cement due to externally-derived CO2 in sub-arkosic sandstones, North Sea. Journal of Geo-chemical Exploration 69-70, 645-649 (2000).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw