進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1806201921215900
論文名稱(中文) 應用證據理論於失效模式與效應分析
論文名稱(英文) Applying Evidence Theory to Failure Mode and Effects Analysis
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系
系所名稱(英) Department of Industrial and Information Management
學年度 107
學期 2
出版年 108
研究生(中文) 李冠霖
研究生(英文) Kuan-Lin Lee
電子信箱 gorden5311@gmail.com
學號 R36061089
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-陳梁軒
口試委員-王泰裕
口試委員-謝中奇
中文關鍵字 失效模式與效應分析  證據理論  證據組合規則 
英文關鍵字 Failure mode and effect analysis  Evidence theory  Combination rule 
學科別分類
中文摘要 失效模式與效應分析(Failure Mode and Effects Analysis,FMEA)被廣泛應用於檢查系統中的潛在失效風險,而過往FMEA 需以明確值進行評估,但考量決策者評估時會涉及自身主觀想法,這些主觀想法往往含有不確定性與模糊性,故有許多學者以模糊理論為基礎發展FMEA,以刻劃FMEA 過程中的決策者不確定性認知;而在FMEA 結合模糊理論的方法中,近年開始有學者以證據理論(evidence theory)為發展主軸,證據理論能夠藉由證據組合規則(combinationrule)整合每位專家決策,得到群體綜合評估,過程中不需訂定複雜的模糊規則,亦不需專家間的意見妥協。
然而證據組合規則(combination rule)作為整合基本機率指派之方法,在決策者評估間高度衝突的情況下,證據組合規則之整合結果會得到違反直覺的悖論,而過去大部分文獻皆未考慮到此缺陷;為使基於證據理論的FMEA方法能被應用於更廣泛的決策情境,本研究透過相似性測度衡量決策者評估以求出專家間於不同風險類別之共識後再行整合,可避免直接使用證據組合規則的整合缺陷,且在整合過程中透過熵值求出專家評估的明確程度,做為專家間客觀權重,以改良過去文獻假設權重為已知或主觀設定的權重給定方式。
在排序指標的部分,本研究有別於傳統FMEA 的風險優先數,本研究以信任區間(belief interval)做為排序依據,信任區間可藉由信任函數及似真函數直觀地反應原始專家評估之風險高低程度,且過往研究方法之排序指標,並無法辨識失效模式間之風險差異,而本研究可透過計算信任區間差距以求得失效模式間之風險差異,能提供較多資訊的排序指標。透過案例演算與數值分析,發現本研究方法不受證據組合規則之缺陷影響,在專家間共識程度低的情況下仍可求出整合結果,不會因專家間評估差距而產生不合理甚至無解之整合結果。
英文摘要 Failure mode and effect analysis (FMEA) has been widely applied to examine potential failures in systems, designs, and products. The risk priority number (RPN) is the key criterion used to determine the risk priorities of the failure modes. However, traditional FMEA has many irrationalities and needs to be improved for more applications. To overcome the shortcomings of traditional FMEA, we propose an FMEA model based on fuzzy evidence theory. Specifically, the Dempster’s combination rule can’t generate reasonable results under low consensus situation. In this study, we propose an updated method to construct a BPA for risk evaluation. We illustrate several examples and use the modified method to deal with a risk priority evaluation of the failure modes of the rotor blades of an aircraft engine. The results show that the proposed approach is more flexible and reasonable for real applications than previous methods.
論文目次 摘要 I
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究流程 3
1.4 論文架構 4
第二章 文獻探討 5
2.1失效模式與效應分析 5
2.2模糊理論 12
2.3相似性測度 20
2.4 群體決策 23
2.5 證據理論 26
2.6 證據理論結合FMEA之應用 30
2.7 結論 34
第三章 研究方法 35
3.1 研究構想 35
3.2 模式建構 37
第四章 範例演算 50
4.1 數值案例演算 50
4.2 求解結果比較與分析 58
第五章 結論與未來研究方向 63
5.1 研究結論 63
5.2 未來研究方向 64
參考文獻 65
附錄 69
參考文獻 1. Bao, Y., Peng, X., & Zhao, B. (2013). The interval number distance and completeness based on the expectation and width. Fuzzy Systems & Mathematics, 27, 133-139.
2. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141.
3. Campos, F., & Cavalcante, S. (2003, October). An extended approach for Dempster-Shafer theory. In Proceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications (pp. 338-344). IEEE.
4. Chen, S. H., & Hsieh, C. H. (1999, August). Ranking generalized fuzzy number with graded mean integration representation. In Proceedings of the eighth international conference of fuzzy sets and systems association world congress (Vol. 2, pp. 551-555).
5. Chen, S. J., & Chen, S. M. (2003). Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE Transactions on fuzzy systems, 11(1), 45-56.
6. Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making methods. In Fuzzy Multiple Attribute Decision Making (pp. 289-486). Springer, Berlin, Heidelberg.
7. Chen, S. M. (1996). Evaluating weapon systems using fuzzy arithmetic operations. Fuzzy Sets and Systems, 77(3), 265-276.
8. Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81(3), 311-319.
9. De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control, 20(4), 301-312.
10. Delgado, M., Vila, M. A., & Voxman, W. (1998). A fuzziness measure for fuzzy numbers: Applications. Fuzzy Sets and Systems, 94(2), 205-216.
11. Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics, 38(2), 325–339.
12. Du, Y., Lu, X., Su, X., Hu, Y., & Deng, Y. (2016). New failure mode and effects analysis: An evidential downscaling method. Quality and Reliability Engineering International, 32(2), 737-746.
13. Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626.
14. Gargama, H., & Chaturvedi, S. K. (2011). Criticality assessment models for failure mode effects and criticality analysis using fuzzy logic. IEEE Transactions on Reliability, 60(1), 102-110.
15. Ghyym, S. H. (1999). A semi-linguistic fuzzy approach to multi-actor decision-making: Application to aggregation of experts' judgments. Annals of Nuclear Energy, 26(12), 1097-1112.
16. Hsu, H. M., & Chen, C. T. (1996). Aggregation of fuzzy opinions under group decision making. Fuzzy Sets and Systems, 79(3), 279-285.
17. Hu, J., Zhang, Y., Chen, X., & Liu, Y. (2013). Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number. Knowledge-Based Systems, 43, 21-29.
18. Jiang, W., Xie, C., Wei, B., & Zhou, D. (2016). A modified method for risk evaluation in failure modes and effects analysis of aircraft turbine rotor blades. Advances in Mechanical Engineering, 8(4), 1687814016644579.
19. Johnson, K. G., & Khan, M. K. (2003). A study into the use of the process failure mode and effects analysis (PFMEA) in the automotive industry in the UK. Journal of Materials Processing Technology, 139(1-3), 348-356.
20. Jousselme, A. L., Grenier, D., & Bossé, É. (2001). A new distance between two bodies of evidence. Information Fusion, 2(2), 91-101.
21. Kahraman, C., Cebeci, U., & Ulukan, Z. (2003). Multi-criteria supplier selection using fuzzy AHP. Logistics Information Management, 16(6), 382-394.
22. Lee, H. S. (2002). Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy Sets and Systems, 132(3), 303-315.
23. Lee-Kwang, H., Song, Y. S., & Lee, K. M. (1994). Similarity measure between fuzzy sets and between elements. Fuzzy Sets and Systems, 62(3), 291-293.
24. Li, D., & Cheng, C. (2002). Fuzzy multiobjective programming methods for fuzzy constrained matrix games with fuzzy numbers. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(04), 385-400.
25. Li, Z., Xiao, F., Fei, L., Mahadevan, S., & Deng, Y. (2017). An evidential failure mode and effects analysis using linguistic terms. Quality and Reliability Engineering International, 33(5), 993-1010.
26. Liang, Z., & Shi, P. (2003). Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters, 24(15), 2687-2693.
27. Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Systems with Applications, 40(2), 828-838.
28. Liu, Z., & Xiao, F. (2019). An Intuitionistic Evidential Method for Weight Determination in FMEA Based on Belief Entropy. Entropy, 21(2), 211.
29. Mattsson, F. (1995). An introduction to risk analysis for medical devices. Complicance Engineering European Edition, 6, 29-38.
30. Mikulak, R. J., McDermott, R., & Beauregard, M. (2008). The basics of FMEA. Productivity Press.
31. Pappis, C. P., & Karacapilidis, N. I. (1993). A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets and Systems, 56(2), 171-174.
32. Rakesh, R., Jos, B. C., & Mathew, G. (2013). FMEA analysis for reducing breakdowns of a sub system in the life care product manufacturing industry. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(2), 218-25.
33. Satty, T. L. (1980). The Analytic Hierarchy: Plan, Priority Setting. Resource Allocation, McGraw-Hill, New York.
34. Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton university press.
35. Su, X., Deng, Y., Mahadevan, S., & Bao, Q. (2012). An improved method for risk evaluation in failure modes and effects analysis of aircraft engine rotor blades. Engineering Failure Analysis, 26, 164-174.
36. Yang, J., Huang, H. Z., He, L. P., Zhu, S. P., & Wen, D. (2011). Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty. Engineering Failure Analysis, 18(8), 2084-2092.
37. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
38. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199-249.
39. Zadeh, L. A. (1986). A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Magazine, 7(2), 85-85.
40. Zeleny, M., & Cochrane, J. L. (1982). Multiple criteria decision making McGraw-Hill New York, 34.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-05-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-05-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw