進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1806201915322100
論文名稱(中文) 直火式保溫罩及熱風爐之熱傳與熱應力分析
論文名稱(英文) The Heat Transfer and Thermal Stress Analysis of an Acting-type Heat Retention Panel and a Hot Blast Stove
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 郭晉維
研究生(英文) Jin-Wei Guo
學號 N16064307
學位類別 碩士
語文別 中文
論文頁數 159頁
口試委員 指導教授-張錦裕
口試委員-陳志臣
口試委員-魏蓬生
口試委員-黃正弘
中文關鍵字 熱軋  中間胚保溫罩  熱風爐  熱應力  熱傳  數值模擬 
英文關鍵字 Hot strip rolling  Transfer bar  Heat retention panel  Hot blast stove  Thermal stress  Heat transfer  Numerical simulation 
學科別分類
中文摘要 鋼鐵製程中,上游高爐鐵水煉製之產量與下游熱軋帶鋼本身性質的提升是製程中持續受到關注的重點,因此本研究以數值模擬針對熱軋過程所使用之持溫設備與高爐製程中所使用之熱風爐進行研究,第一部分為熱軋廠直火式保溫罩熱傳分析,第二部分則為熱風爐熱應力之分析。
高溫鋼胚經粗軋後成為中間胚,並經由輥道輸送經過保溫罩等持溫設備進行持溫,而在持溫過程中,中間胚之溫度分佈將影響軋延完成後之鋼材機械性質與表面品質。本研究以中鋼2號熱軋廠傳統被動式保溫罩持溫區段為對象,以數值方法建構產線之二維與三維熱傳模型。本研究首先以二維模型進行分析,能夠依據不銹鋼中間胚頭尾溫度值分析結果迅速更換邊界參數之設定,接著以二維模型建立之邊界參數作為三維模型之邊界參數設定,分析中間胚在輸送過程中,中間胚頭、尾部溫度與完整之溫降曲線數值解,並與實測數據進行比對校正。最後建構直火式保溫罩持溫設備熱傳模型,由分析可知中間胚的頭尾溫差能透過直火式裝置減少至32.03°C與1.34°C。
熱風爐在操作過程中壁面的耐火磚受熱風高溫長時間作用會產生變形抑或是破壞,嚴重時熱風會透過壁面的裂縫滲透至鐵殼,使得熱應力集中並產生熱點現象,最後影響熱風爐之產能與效率。本研究首先建立三維數值模型探討熱風爐爐體結構中所預留之膨脹縫對於熱應力之影響。由模擬結果可知,預留膨脹縫之設計能降低耐火磚之熱應力,接著將此膨脹縫引入熱風爐整體之模型進行熱應力分析。由數值模擬可知,熱應力主要集中於蓄熱爐與燃燒爐上方之內層磚頸部、拱頂之間的連接管與熱風爐下方送風支管。
英文摘要 In the steel process, production of molten iron and improvement of the mechanical properties of the strip steel have been a focus for a long time. Therefore, the numerical simulation was utilized to analyze the heat retention devices in hot strip rolling process and the hot blast stove used in iron making process. In the heat retention panel study, high temperature transfer bars are transported by conveyors through the heat retention panel in order to decrease the temperature difference between the head and the tail of the transfer bars. A three-dimensional numerical model of a traditional passive heat retention panel was developed to investigate the temperature difference between the head and the tail of the transfer bars. According to the simulation results, it was found that the temperature difference in the transfer bar at FET position between the numerical simulation and the in-situ data was about 1.53%. Based on the developed model, a three-dimensional numerical model of the acting-type heat retention panel was constructed in order to predict whether the temperature difference decreases during the heat retention process. According to the numerical results of the acting-type heat retention panel model, providing the heat fluxes on the upper surface of the radiation plate can effectively reduce the temperature difference. In the hot blast stove study, a three-dimensional finite element model was developed to investigate the thermal stress distribution. The numerical results showed that the maximum thermal stress of the refractories was about 25.0 MPa which occurred on the neck of checker chamber and combustion chamber, inner refractories of connection and blast pipes. The maximum thermal deformation about 249 mm occurred on the neck of checker chamber. The maximum thermal deformation on the dome of checker chamber and combustion chamber was about 77 mm and 72 mm, respectively. Furthermore, the shell can also generate stress and deformation because of the temperature difference.
論文目次 摘 要 I
Abstract II
誌 謝 XVI
目 錄 XVII
表目錄 XX
圖目錄 XXI
符號說明 XXVI
第一章、緒論 1
1.1前言 1
1.2文獻回顧 3
1.3研究目的 8
第二章、理論分析 17
2.1保溫罩熱傳分析 17
2.1.1物理模型 17
2.1.2物理模型之基本假設 17
2.1.3統御方程式 18
2.1.4初始條件與邊界條件 21
2.2熱風爐熱應力分析 36
2.2.1物理模型 36
2.2.2物理模型之基本假設 37
2.2.3統御方程式 38
2.2.4初始條件與邊界條件 43
第三章、數值方法 62
3.1保溫罩熱傳分析 62
3.1.1數值方法 62
3.1.2計算流程 63
3.1.3收斂準則 63
3.1.4副程式UDF (User-Defined Functions) 63
3.1.5格點測試 64
3.2熱風爐熱應力分析 73
3.2.1數值方法 73
3.2.2計算流程 73
3.2.3格點測試 74
第四章、實驗設備與方法 78
4.1鋼胚持溫試驗爐與方法介紹 78
4.2實驗步驟 79
4.3數值方法與試驗爐實驗之驗證 79
4.3.1物理模型 79
4.3.2物理模型基本假設 80
4.3.3初始條件與邊界條件 80
第五章、結果與討論 90
5.1保溫罩熱傳分析 90
5.1.1二維傳統被動式保溫罩中間胚溫降分析 90
5.1.2三維傳統被動式保溫罩中間胚溫降分析 91
5.1.3三維直火式保溫罩中間胚溫降分析 92
5.1.4以實驗驗證數值方法 93
5.2熱風爐熱應力分析 114
5.2.1暫態與穩態分析與膨脹縫對於溫度及熱應力之探討 114
5.2.2熱風爐整體之熱應力分析 115
第六章、結論 150
6.1保溫罩熱傳分析 150
6.2熱風爐熱應力分析 151
6.2.1膨脹縫探討 151
6.2.2熱風爐整體熱應力分析 152
參考文獻 153
附錄A 副程式 UDF(User-Define Function) 158
參考文獻 [1] Wang, P. and Duan, W., “Research and Development of Temperature Holding Hood for Hot Charging of Continuous Casting Slab”, The Production Department of WISCO Wuhan Hubei, Hubei, China, 2003.
[2] Shulkosky, R., A., Rosburg, D., L., Chapman, J., D. and Barnes, K., R., “A Microstructure Evolution Model Used for Hot Strip Rolling”, Materials Science & Technology Conference, 2003.
[3] Bu, H., “Simulating and Analyzing of Intermediate Table Insulation Technology in Hot Continuous Rolling”, M.S. thesis, Wuhan University of Science and Technology, Hubei, China, 2007.
[4] Zhang, P., Zhang, N. and Li, Y., “Numerical Simulation of Temperature Field During the Multi-pass Hot Strip Rolling in Temperature Holding Hood”, Metallurgical Equipment, Volume 163, Issue 3, pp. 5-8, 2007.
[5] Zhang, P., Li, Y., Li, Y., Zhang, N. and Xiao, H., “The Simulation of Temperature Field of Hot Rolling Intermediate Billet”, CSM Annual Meeting, Chengdu, China, 2007.
[6] Panjkovic, V., “Model for Prediction of Strip Temperature in Hot Strip Steel Mill”, Journal of Applied Thermal Engineering, Volume 27, pp. 2404-2414, 2007.
[7] Bu, H., Ye, C., Yang, H. and Zhao, G., “Effect of Heat Preservation Technology on Power Parameters of Finish Rolling in Hot Continuous Rolling”, College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Hubei, China, 2008.
[8] Ling, A., “Comparison and Choice of the Temperature Maintaining Equipment in the Thin Slab Continuous Casting and Rolling”, Metal Materials and Metallurgy Engineering, Volume 37, Issue3, pp. 36-38, 2009.
[9] Tudball, A. and Brown, S., G., R., “Practical Finite Element Heat Transfer Modelling for Hot Rolling of Steels”, Ironmaking and Steelmaking, Volume 33, pp. 61-66, 2009.
[10] Cheol, J. P., Kang, S., Y. and Chang, H., L., “Advanced Temperature Control of High Carbon Steel for Hot Strip Mills”, Journal of Mechanical Science and Technology, Volume 24, pp. 1011-1017, 2009.
[11] Mei, R., b., Li, C., S., Liu, X., H. and Han, B.,” Analysis of Strip Temperature in Hot Rolling Process by Finite Element Method”, Journal of Iron and Steel Research, International, Volume 17, pp. 17-21, 2010.
[12] Speicher, K., Steinboek, A., Kiefer, T. and Kugi, A., “Modeling Thermal Shocks and Air Cooling Using the Finite Difference Method”, IFAC, Volume 45, Issue 2, pp. 364-368, 2012.
[13] Legrand, N., Weisz-Patrault, D., Horsky, J., Luks, T., Labbe, N., Picard, M. and Ehrlacher, A., “Characterization of Roll Bite Heat Transfers in Hot Steel Strip Rolling and Their Influence on Roll Thermal Fatigue Degradation”, Brno University of Technology, Brno, Czechia, 2013.
[14] Grajcar, A., Skrzypczyk, P., Wozniak, D. and Kolodziej, S., “Semi-Industrial Simulation of Hot Rolling and Controlled Cooling of Mn-Al Trip Steel Sheets”, International Journal of Achievements in Materials and Manufacturing Engineering, Volume 57, pp. 38-47, 2013.
[15] Delpature, Y., Fantuzzi, M., Filippi, E. and Venanzini, M., “Transfer Bar Reheating in Hot Strip Mills with the Active Tunnel Furnace (ATF)”, Millennium Steel, Volume 28, pp. 180-182, 2006.
[16] Yang, H., Y., “The Numerical Simulation Analyses of Combustion, Flow Field and Heat Transfer for Hot-Blast Stove”, M.S. thesis, Institute of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, 2008.
[17] Sahin, A. and Morari M., “Optimizing Control of Hot Blast Stoves in Staggered Parallel Operation”, IFAC Proceedings Volumes, Volume 41, Issue2, pp. 1982-1987, 2008.
[18] Huang, Z., “Numerical Simulation of Heat Transfer in Regenerator and Operation Regulation Research of Hot Blast Stove”, M.S. thesis, Power Engineering and Engineering Thermophysics, Chongqing University, Chongqing, China, 2008.
[19] Liu, Y., Lv, Z. and Wang, W., “An Improved Generalized-Trend-Diffusion-Based Data Imputation for Steel Industry”, International Journal of Mathematical Problems in Engineering, Volume 2013, pp. 1-10, 2013.
[20] Rieger, J., Weiss, C. and Rummer, B., “Modelling and Control of Pollutant Formation in Blast Stoves”, International Journal of Cleaner Production, Volume 88, pp. 254-261, 2014.
[21] Kotov, K., I., Rovenskii, M., I., Pryadko, V., M. and Magala, V., S., “Causes of Failure of Refractory Structures in the Stoves and Hot-Blast Tract of Blast Furnaces”, Refractories and Industrial Ceramics, Volume 10, Issue 11-12, pp. 747-750, 1969.
[22] Takatani, K., Inada, T. and Takata, K., “Mathematical Model for Transient Erosion Process of Blast Furnace Hearth”, ISIJ International, Volume 41, Issue 10, pp. 1139-1145, 2001.
[23] Chen, L., Li, Y. and Gui, J., “Thermal Stress of Blast Furnace Hearth Linings nder Rrosion State”, International Journal of Applied Mechanics and Materials, Volumes 16-19, pp. 1101-1105, 2009.
[24] Hu, X., “The Design and Analysis for Outside Steel Shell of Enternal Combustion Hot Stove”, M.S. thesis, Xi’an University of Architecture and Technology, Shaanxi, China, 2009.
[25] Chang, W., C., “Numerical Simulation of the External Combustion Hot-Blast Stove’s Connector Tube Section”, M.S. thesis, University of Science and Technology Liaoning, Liaoning, China, 2010.
[26] Brulin, J., Roulet, F., Rekik, A., Blond, E., Gasser, A., Mcnally, R. and Micollier, M., “Latest Evolution in Blast Furnace Hearth Thermo-Mechanical Stress Modelling”, 4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking, France, pp. 1-7, 2011.
[27] Carreau, D., Atlija, G. and Laar, F., “ArcelorMittal Dofasco No. 2 Blast Furnace Stove Refractory Findings and Innovative Fesign and Repair Solutions”, The Iron & Steel Technology Conference and Exposition, Pittsburgh, Volume 1, pp. 469-480, 2010.
[28] Shrivastava, A. and Himte, R. L., “A Comprehensive Modeling and Analysis of Blast Furnace Cooling Stave Based Thermal Stress and Heat Transfer Analysis”, International Journal of Engineering Research & Technology (IJERT), Volume 1, Issue 9, pp. 1-8, 2012.
[29] Guo, P., “Pipe Structure and Lining Structure Optimization of the Hot Blast Stove”, M.S. thesis, Wuhan University of Science and Technology, Hubei, China, 2012.
[30] Chen, X., J., Wu, Q., C., Zhang, J., L. and Wang, Y., T., “The Hot Discussion of High Blast Temperature”, China Metallurgical, Volume 23, Issue 9, pp. 1-12, 2013.
[31] Jiang, D., “Analysis and Optimization Design of Top-Combustion Type Hot Blast Stove Shell Considering Thermal-Stress Coupling Effect and Earthquake Effect”, M.S. thesis, Architecture and Civil Engineering, Xi’an University of Architecture and Technology, Shaanxi, China, 2013.
[32] Kaymak, Y., Hauck, T., Lin, R. and Rausch, H., “Analysis of Thermal Stresses in the Blast Furnace Hearth Considering the Contact of Refractory Blocks”, METEC conference, 2015.
[33] Chomyn, K., T., Pinto, S., M., DeGorter, M., E., Blackmore, A., D., Busser, J., W. and Ghorbani, H., R., “Hot Blast Air Distribution Main Design Modifications for Improved Performance”, Proceedings of the Ironmaking, Iron Ore and Agglomeration Seminars, Volume 46, pp. 27-36, 2016.
[34] Schaub, E., Castagnola, C., Munzer, J., Oliveira, A. and Vieira, L., F., “Hot Blast Stoves – Latest Developments, Assessment and Lifetime Extension”, Proceedings of the Ironmaking, Iron Ore and Agglomeration Seminars, Volume 47, pp. 125-136, 2017.
[35] Yan, K. and Cheng, S., “Stress and Deformation Analysis of Top Combustion Hot Blast Stove Shell”, The Chinese Journal of Process Engineering, Volume 17, Issue 7, pp. 771-778, 2017.
[36] Li, G., Luo, Y., Li, M., Mao, C. and Chen, R., “Inspection, Analysis and Solutions of Blast Furnace Hot-Blast Stove Furnace Shell Crack”, Proceedings of the 11th CSM Steel Congress, Volume 66, pp. 241-249, 2017.
[37] Mandal, A. K. and Sinha, O., P., “Technology Changes in Blast Furnace Iron Making in India since Last Few Decades”, International Journal of Science and Research, Volume 2, Issue 12, pp. 211-219, 2013.
[38] ANSYS Fluent, A Release 18.1 documentation, ANSYS, Inc.2017.
[39] Ramanenka, D., Antti, M-L., Gustafsson, G. and Jonsen, P., “Characterization of High-Alumina Refractory Bricks and Modelling of Hot Rotary Kiln Behaviour”, Engineering Failure Analysis, Volume 79, pp. 852-864, 2017.
[40] Timoshenko, S. and Goodier, J., N., “Theory of Elasticity”, New York, USA, 1934.
[41] ANSYS Workbench, A Release 18.1 documentation, ANSYS Inc.2017.
[42] Eslami, M., R., Hentnarski, R., B., Ignaczak, J., Noda, N., Sumi, N. and Tanigawa, Y., “Thermal Stresses in Circular ” ,Theory of Elasticity and Thermal Stresses, pp. 445-512, 2013.
[43] Aksyushin, M., Kalugin, M., Malikov, G. and Yaroshenko, Y., “Improvement of the Energy Efficiency of Hot Blast Stove Performance”, Advanced Methods and Technologies in Metallurgy in Russia, pp. 169-176, 2018.
[44] Dana, K., Sinhamahapatra, S., Tripathi, H., S. and Ghosh, A., “Refractories of Alumina-Silica System”, Transactions of the Indian Ceramic Society, Volume 73, Issue 1, pp. 1-13, 2014.
[45] Silva, S., N., Romao, E., C., Barbosa, G., S., Costa, W., B., Vernilli, F. and Lopes, J., M., G., “Revamping of CSN BF2 Hot Blast Stove No.1”, Ironmaking & Steelmaking, Volume 39, Issue 8, pp. 622-630, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw