進階搜尋


下載電子全文  
系統識別號 U0026-1806201723585100
論文名稱(中文) 以石墨烯、氮、硫共摻雜二氧化鈦複合光觸媒於日光燈下降解室內空氣污染物甲醛之研究
論文名稱(英文) Photocatalytic degradation of formaldehyde in indoor air by graphene/S, N/TiO2 nanocomposite photocatalyst using a fluorescent lamp
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 蔡昀諺
研究生(英文) Yun-Yan Tsai
電子信箱 p56044055@mail.ncku.edu.tw
學號 P56044055
學位類別 碩士
語文別 英文
論文頁數 165頁
口試委員 指導教授-朱信
口試委員-鄧熙聖
口試委員-李玉郎
口試委員-劉守恒
中文關鍵字 室內空氣品質  甲醛  光觸媒  二氧化鈦  石墨烯 
英文關鍵字 Indoor air quality  Formaldehyde  Photocatalyst  Titanium dioxide  Graphene 
學科別分類
中文摘要 近代人類生活方式,一天約有80%的時間待於室內環境中,如室內環境中含有空氣污染物質,長期暴露下會造成健康上的危害。因此室內空氣品質的重要性越來越高,其中室內空氣污染物當中以甲醛最常出現於室內環境當中,而甲醛已經被證實對人體具有致癌性,其主要污染源來自於家具、天花板、牆壁粉刷、油漆、清潔劑的使用等,故室內空氣污染物甲醛的去除技術仍然需要進行研究。室內環境條件通常是常溫、高濕度且污染物常以低濃度、不易收集等特性存在。而室內空氣污染控制技術中,以光觸媒氧化法為最佳的去除技術之一,此法的優點是能夠完全將污染物轉化成二氧化碳與水,不會產生二次污染物,而且所消耗的能源低。
光觸媒應用中以二氧化鈦使用最為廣泛,因成本低、高穩定度、良好的光催化能力。但因二氧化鈦大部分的吸收波長於紫外光,不利於使用於室內,由於室內燈光之照射波長範圍大部分為可見光。此缺點限制二氧化鈦於室內空氣污染去除之利用。
本研究將透過摻雜硫、氮、石墨烯於二氧化鈦中以溶熱法製作成複合奈米材料,以改善二氧化鈦本身吸收可見光之限制。從UV-visible光譜的結果可得知摻雜硫、氮、石墨烯於二氧化鈦中可增加可見光的吸收強度。根據XPS、FTIR、Raman的分析結果顯示二氧化鈦複合光觸媒表面具有含氧官能基的鍵結並產生部分化學缺陷。從XRD、SEM、TEM的結果顯示,摻雜還原氧化石墨烯會減少二氧化鈦的晶體尺寸,而二氧化鈦附著於還原氧化石墨烯上或是被夾於還原氧化石墨烯層中。在光催化活性試驗中以0.1wt%還原氧化石墨烯具有最佳的光催化活性,過多的還原氧化石墨烯會造成光遮蔽現象導致光催化活性降低。從操作參數與動力學試驗結果指出水氣濃度影響甲醛光催化活性勝過於溫度的影響,因水氣會與甲醛產生競爭吸附作用。根據FTIR測試中發現甲醛在光催化過程中形成甲酸鹽,再轉化成一氧化碳,最後轉化成二氧化碳達到完全去除。
英文摘要 Nowadays, people spend more than 80% of time in indoor environments in modern social way of life. Therefore, indoor air quality should be paid more attention due to the indoor air pollutants impact on human health through directly chronic inhalation. Formaldehyde most often appears in the indoor environment where can be escaped from furnishing, cleaning agents and paints. And it has been confirmed to be carcinogenic to the human body. Thus, the elimination of formaldehyde is essential for improving air quality.
Indoor environmental conditions are usually room temperature, high humidity and often with low concentration pollutants which are not easy to collect. Fortunately, photocatalytic oxidation is a suitable technology with low-cost, no secondary pollution and low energy consumption. Titanium dioxide is most widely used in photocatalytic applications. However, titanium dioxide absorption band is mostly in the range of ultraviolet light, this drawback limits the removal of indoor air pollution by titanium dioxide.
In this study, the photocatalysts were prepared through doping sulfur, nitrogen and graphene in titanium dioxide by a solvothermal method to improve the visible light absorption of titanium dioxide. The UV-visible absorption spectrum indicates that doping of S, N and graphene can improve visible light absorption intensity and reduce the band gap. The XPS, FTIR and Raman spectra show that synthesis of the rGO/S0.05N0.1TiO2 composite produces new chemical defect and bonding by introducing oxygen-containing functional groups, further enhances the photocatalytic effect. The XRD, SEM, TEM and BET results show that crystallite sizes of rGO/S0.05N0.1TiO2 are reduced by introduction of graphene sheets. The TiO2 particles are attached to the rGO surface and interposed between the rGO layers, promoting an increase of specific surface area.
rGO can enhance the overall photocatalytic efficiency due to its excellent electron transport capacity and high specific surface area, but excess rGO could shield the light. In this study, 0.1 wt% rGO is the best doping amount. The reaction rate of formaldehyde is mainly affected by water vapor concentration. Too little water vapor may reduce the generation of hydroxyl radicals; Too much water vapor may cause competitive adsorption of water with formaldehyde. Langmuir-Hinshelwood model 4 is best suited to this study, the water vapor has more effect on the formaldehyde conversion than the temperature under building room environment. Regarding the conversion mechanism was verified by FTIR, formaldehyde may be first converted to formate, then carbon monoxide, and finally carbon dioxide.
論文目次 摘要 I
ABSTRACT II
致謝 IV
CONTENT V
LIST OF TABLES IX
LIST OF FIGURES XI
CHAPTER 1 INTRODUCTION 1
1-1 MOTIVATION 1
1-2 OBJECTIVES 3
CHAPTER 2 LITERATURES SURVEY 5
2-1 INTRODUCTION OF AIR POLLUTANTS 5
2-1.1 Volatile organic compounds (VOCs) 5
2-1.2 Indoor air quality 6
2-1.3 Control technologies of air pollutants 12
2-2 INTRODUCTION OF FORMALDEHYDE 15
2-2.1 Property of formaldehyde 17
2-2.2 Hazards of formaldehyde 19
2-3 PHOTOCATALYSIS 21
2-3.1 Photocatalyst 21
2-3.2 Principle of photocatalysis reaction 23
2-3.3 Preparation method of photocatalyst 30
2-4 TITANIUM DIOXIDE 34
2-4.1 Physical and chemical properties 34
2-4.2 Application of TiO2 37
2-4.3 Modification of TiO2 39
2-5 GRAPHENE 42
2-5.1 Physical and chemical properties 42
2-5.2 Synthesis of graphene 43
2-5.3 Application of TiO2 coupled with graphene 46
2-6 CHEMICAL REACTION KINETICS 48
2-6.1 Plug flow reactor 50
2-6.2 Catalytic kinetic model 52
2-6.3 Arrhenius equation 52
CHAPTER 3 MATERIAL AND METHODS 54
3-1 RESEARCH SCOPE 54
3-2 EXPERIMENTAL MATERIALS AND EQUIPMENTS 56
3-2.1 Chemicals 56
3-2.2 Reactor and experimental set-up 56
3-3 EXPERIMENTAL METHODS 60
3-3.1 The preparation of graphite oxide 60
3-3.2 The preparation of photocatalysts 62
3-3.3 Preparation of photocatalytst film 64
3-3.4 The stability and photolysis of simulated formaldehyde gas system 64
3-4 CHARACTERISTICS OF PHOTOCATALYSTS 66
3-4.1 Thermogravimetric/ differential thermal analysis (TG/DTA) 66
3-4.2 X-ray powder diffraction spectroscopy (XRD) 66
3-4.3 Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) 67
3-4.4 Transmission electron microscopy (TEM) 67
3-4.5 Fourier transform infrared spectroscopy (FTIR) 67
3-4.6 UV-visible spectrometry 67
3-4.7 X-ray photoelectron spectroscopy (XPS) 68
3-4.8 BET 68
CHAPTER 4 RESULTS AND DISCUSSION 69
4-1 CHARACTERISTICS OF PHOTOCATALYSTS 69
4-1.1 Thermogravimetric/differential thermal analysis (TG/DTA) 69
4-1.2 X-ray powder diffraction spectroscopy (XRD) 74
4-1.3 Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) 79
4-1.4 Transmission electron microscopy (TEM) 87
4-1.5 Fourier transform infrared spectroscopy (FTIR) 94
4-1.6 Raman spectroscopy 97
4-1.7 UV-visible spectrometry 99
4-1.8 X-ray photoelectron spectroscopy (XPS) 101
4-1.9 BET 110
4-2 ACTIVITY TEST OF PHOTOCATALYSTS 113
4-3 PARAMETERS TEST OF PHOTOCATALYSTS 116
4-3.1 Effect of inlet concentration 116
4-3.2 Effect of relative humidity 118
4-3.3 Effect of temperature 121
4-3.4 Effect of residence time 123
4-4 KINETIC MODELS 125
4-4.1 Langmuir-Hinshelwood Model 125
4-5 MECHANISM OF PHOTOCATALYTIC REACTION 132
4-5.1 Analysis of byproducts by FTIR 132
4-5.2 Mineralization ratio analysis 136
4-5.3 Reaction pathways 137
CHAPTER 5 CONCLUSION AND SUGGESTION 141
5-1 CONCLUSION 141
5-2 SUGGESTION 142
REFERENCE 143
參考文獻 Adamu, H., Dubey, P., Anderson, J.A. 2016. Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chemical Engineering Journal, 284, 380-388.
Ahmad, H., Kamarudin, S., Minggu, L., Kassim, M. 2015. Hydrogen from photo-catalytic water splitting process: a review. Renewable and Sustainable Energy Reviews, 43, 599-610.
Akhavan, O., Ghaderi, E. 2012. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon, 50(5), 1853-1860.
Akhavan, O., Ghaderi, E. 2009. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. The Journal of Physical Chemistry C, 113(47), 20214-20220.
Aleksandrzak, M., Adamski, P., Kukułka, W., Zielinska, B., Mijowska, E. 2015. Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Applied Surface Science, 331, 193-199.
Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L. 2016. Graphene Science Handbook: Mechanical and Chemical Properties. CRC Press.
Ao, C., Lee, S., Yu, J., Xu, J. 2004. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Applied catalysis B: environmental, 54(1), 41-50.
Arman, S., Omidvar, H., Tabaian, S., Sajjadnejad, M., Fouladvand, S., Afshar, S. 2014. Evaluation of nanostructured S-doped TiO2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel. Surface and Coatings Technology, 251, 162-169.
Arunachalam, A., Dhanapandian, S., Manoharan, C., Sivakumar, G. 2015. Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 105-112.
Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S., Sopian, K. 2012. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci, 7, 4871-4888.
Bai, B., Qiao, Q., Li, J., Hao, J. 2016. Progress in research on catalysts for catalytic oxidation of formaldehyde. Chinese Journal of Catalysis, 37(1), 102-122.
Balandin, A.A. 2011. Thermal properties of graphene and nanostructured carbon materials. Nature materials, 10(8), 569-581.
Banerjee, S., Dionysiou, D.D., Pillai, S.C. 2015. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catalysis B: Environmental, 176, 396-428.
Bavykin, D.V., Friedrich, J.M., Walsh, F.C. 2006. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Advanced Materials, 18(21), 2807-2824.
Bell, N.J., Ng, Y.H., Du, A., Coster, H., Smith, S.C., Amal, R. 2011. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. The Journal of Physical Chemistry C, 115(13), 6004-6009.
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V. 2015. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347(6217), 1246501.
Bosetti, C., McLaughlin, J., Tarone, R., Pira, E., La Vecchia, C. 2008. Formaldehyde and cancer risk: a quantitative review of cohort studies through 2006. Annals of Oncology, 19(1), 29-43.
Bourgeois, P.-A., Puzenat, E., Peruchon, L., Simonet, F., Chevalier, D., Deflin, E., Brochier, C., Guillard, C. 2012. Characterization of a new photocatalytic textile for formaldehyde removal from indoor air. Applied Catalysis B: Environmental, 128, 171-178.
Brinker, C., Keefer, K., Schaefer, D., Ashley, C. 1982. Sol-gel transition in simple silicates. Journal of Non-Crystalline Solids, 48(1), 47-64.
Butlerow, A. 1859. Ueber einige Derivate des Jodmethylens. Justus Liebigs Annalen der Chemie, 111(2), 242-252.
Cao, S., Liu, T., Tsang, Y., Chen, C. 2016. Role of hydroxylation modification on the structure and property of reduced graphene oxide/TiO2 hybrids. Applied Surface Science, 382, 225-238.
Carp, O., Huisman, C.L., Reller, A. 2004. Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry, 32(1), 33-177.
Chang, K., Chen, W. 2011. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chemical Communications, 47(14), 4252-4254.
Chen, D., Qu, Z., Sun, Y., Wang, Y. 2014a. Adsorption–desorption behavior of gaseous formaldehyde on different porous Al2O3 materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 433-440.
Chen, G., Wu, C., Weng, W., Wu, D., Yan, W. 2003. Preparation of polystyrene/graphite nanosheet composite. Polymer, 44(6), 1781-1784.
Chen, H., Rui, Z., Ji, H. 2014b. Monolith-like TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions. Industrial & Engineering Chemistry Research, 53(18), 7629-7636.
Chen, J.-H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S. 2008. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature nanotechnology, 3(4), 206-209.
Chen, Z., Berciaud, S., Nuckolls, C., Heinz, T.F., Brus, L.E. 2010. Energy transfer from individual semiconductor nanocrystals to graphene. ACS nano, 4(5), 2964-2968.
Chesalov, Y.A., Chernobay, G.B., Andrushkevich, T.V. 2013. FTIR study of the surface complexes of β-picoline, 3-pyridine-carbaldehyde and nicotinic acid on sulfated TiO2 (anatase). Journal of Molecular Catalysis A: Chemical, 373, 96-107.
Chiarello, G.L., Aguirre, M.H., Selli, E. 2010. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. Journal of Catalysis, 273(2), 182-190.
Childs, L.P., Ollis, D.F. 1980. Is photocatalysis catalytic? Journal of Catalysis, 66(2), 383-390.
Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S. 2010. Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences, 35(1), 52-71.
Choucair, M., Thordarson, P., Stride, J.A. 2009. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 4(1), 30-33.
Chun, H.-H., Jo, W.-K. 2016. Adsorption and photocatalysis of 2-ethyl-1-hexanol over graphene oxide–TiO2 hybrids post-treated under various thermal conditions. Applied Catalysis B: Environmental, 180, 740-750.
Clausen, G., Alm, O., Fanger, P.O. 2002. The impact of air pollution from used ventilation filters on human comfort and health. DKV TAGUNGSBERICHT, 29(4), 89-96.
Compton, O.C., Nguyen, S.T. 2010. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. small, 6(6), 711-723.
De Jong, K.P. 2009. Synthesis of solid catalysts. John Wiley & Sons.
Deng, X.-Q., Liu, J.-L., Li, X.-S., Zhu, B., Zhu, X., Zhu, A.-M. 2017. Kinetic study on visible-light photocatalytic removal of formaldehyde from air over plasmonic Au/TiO2. Catalysis Today, 281, 630-635.
Di Valentin, C., Fittipaldi, D. 2013. Hole scavenging by organic adsorbates on the TiO2 surface: a DFT model study. The journal of physical chemistry letters, 4(11), 1901-1906.
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T., Ruoff, R.S. 2007. Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457-460.
Dionysiou, D.D., Puma, G.L., Ye, J., Schneider, J., Bahnemann, D. 2016. Photocatalysis: Applications. Royal Society of Chemistry.
Dong, P., Wang, Y., Guo, L., Liu, B., Xin, S., Zhang, J., Shi, Y., Zeng, W., Yin, S. 2012. A facile one-step solvothermal synthesis of graphene/rod-shaped TiO2 nanocomposite and its improved photocatalytic activity. Nanoscale, 4(15), 4641-4649.
Drewniak, S., Muzyka, R., Stolarczyk, A., Pustelny, T., Kotyczka-Morańska, M., Setkiewicz, M. 2016. Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors, 16(1), 103.
Driscoll, T.R., Carey, R.N., Peters, S., Glass, D.C., Benke, G., Reid, A., Fritschi, L. 2016. The Australian Work Exposures Study: Prevalence of Occupational Exposure to Formaldehyde. Annals of Occupational Hygiene, 60(1), 132-138.
Du, A., Ng, Y.H., Bell, N.J., Zhu, Z., Amal, R., Smith, S.C. 2011. Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. Journal of Physical Chemistry Letters, 2(8), 894-899.
Du, J., Zhao, G., Shi, Y., Li, Y., Zhu, G., Mao, Y., Sa, R., Wang, W. 2013. A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity. Applied Surface Science, 273, 278-286.
Eftekhari, A., Jafarkhani, P. 2013. Curly Graphene with Specious Interlayers Displaying Superior Capacity for Hydrogen Storage. The Journal of Physical Chemistry C, 117(48), 25845-25851.
Ehrhart, P., Jung, P., Schultz, H., Ullmaier, H. 1991. Atomic Defects in Metals/Atomare Fehlstellen in Metallen. Springer.
Emilio, C.A., Litter, M.I., Kunst, M., Bouchard, M., Colbeau-Justin, C. 2006. Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics. Langmuir, 22(8), 3606-3613.
Eslami, A., Amini, M.M., Yazdanbakhsh, A.R., Mohseni‐Bandpei, A., Safari, A.A., Asadi, A. 2016. N, S co‐doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non‐steroidal anti‐inflammatory drugs in water: a comparative study. Journal of Chemical Technology and Biotechnology.
Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., Pillai, S.C. 2015. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1-29.
Etacheri, V., Seery, M., Hinder, S., Pillai, S. 2012. Nanostructured Ti1‑xSxO2‑yNy Heterojunctions for Efficient Visible-Light-Induced Photocatalysis.
Evtushenko, Y.M., Romashkin, S., Davydov, V. 2011. Synthesis and properties of TiO2-based nanomaterials. Theoretical Foundations of Chemical Engineering, 45(5), 731-738.
Fan, X., Yu, C., Yang, J., Ling, Z., Qiu, J. 2014. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon, 70, 130-141.
Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-m., Song, L.-P., Wei, F. 2010. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS nano, 5(1), 191-198.
Fang, J., Shi, F., Bu, J., Ding, J., Xu, S., Bao, J., Ma, Y., Jiang, Z., Zhang, W., Gao, C. 2010. One-step synthesis of bifunctional TiO2 catalysts and their photocatalytic activity. The Journal of Physical Chemistry C, 114(17), 7940-7948.
Fogler, H.S. 1999. Elements of chemical reaction engineering.
Fujishima, A., Rao, T.N., Tryk, D.A. 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21.
Ganguly, A., Sharma, S., Papakonstantinou, P., Hamilton, J. 2011. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. The Journal of Physical Chemistry C, 115(34), 17009-17019.
Ganji, M., Jameh-Bozorgi, S., Rezvani, M. 2016. A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective. Applied Surface Science, 384, 175-181.
Gao, P., Sun, D.D. 2013. Ultrasonic Preparation of Hierarchical Graphene‐Oxide/TiO2 Composite Microspheres for Efficient Photocatalytic Hydrogen Production. Chemistry–An Asian Journal, 8(11), 2779-2786.
Glassman, I., Yetter, R.A., Glumac, N.G. 2014. Combustion. Academic press.
Glenis, S., Nelson, A., Labes, M. 1999. Sulfur doped graphite prepared via arc discharge of carbon rods in the presence of thiophenes. Journal of applied physics, 86(8), 4464-4466.
Gold, V., Loening, K., McNaught, A., Shemi, P. 1997. IUPAC Compendium of Chemical Terminology. Blackwell Science, Oxford.
Golden, R. 2011. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards. Critical reviews in toxicology, 41(8), 672-721.
Goldstein, A.H., Galbally, I.E. 2007. Known and unexplored organic constituents in the earth's atmosphere. Environmental Science & Technology, 41(5), 1514-1521.
Grätzel, M. 1989. Heterogeneous photochemical electron transfer. CRC Press Boca Raton, FL.
Gu, L., Wang, J., Cheng, H., Zhao, Y., Liu, L., Han, X. 2013. One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS applied materials & interfaces, 5(8), 3085-3093.
Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres, 100(D5), 8873-8892.
Hagen, J. 1999. Heterogeneous Catalysis: Fundamentals. Industrial Catalysis: A Practical Approach, 99-210.
Han, Z., Chang, V.-W., Wang, X., Lim, T.-T., Hildemann, L. 2013. Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chemical engineering journal, 218, 9-18.
Hashimoto, K., Irie, H., Fujishima, A. 2005. TiO2 photocatalysis: a historical overview and future prospects. Japanese journal of applied physics, 44(12R), 8269.
Heck, R.M., Farrauto, R.J., Gulati, S.T. 2009. Catalytic air pollution control: commercial technology. John Wiley & Sons.
Herrmann, J.-M. 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129.
Hoang, S., Berglund, S.P., Hahn, N.T., Bard, A.J., Mullins, C.B. 2012. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. Journal of the American Chemical Society, 134(8), 3659-3662.
Hodgson, A., Destaillats, H., Sullivan, D., Fisk, W. 2007. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor air, 17(4), 305-316.
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. 1995. Environmental applications of semiconductor photocatalysis. Chemical reviews, 95(1), 69-96.
Hossaini, H., Moussavi, G., Farrokhi, M. 2014. The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water research, 59, 130-144.
Huang, H., Leung, D.Y., Ye, D. 2011. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. Journal of Materials Chemistry, 21(26), 9647-9652.
Huang, P.-H., Hung, S.-C., Huang, M.-Y. 2014. Molecular dynamics investigations of liquid–vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores. Physical Chemistry Chemical Physics, 16(29), 15289-15298.
Huang, Q., Tian, S., Zeng, D., Wang, X., Song, W., Li, Y., Xiao, W., Xie, C. 2013. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catalysis, 3(7), 1477-1485.
Huang, Y., Ho, S.S.H., Lu, Y., Niu, R., Xu, L., Cao, J., Lee, S. 2016. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules, 21(1), 56.
Hummers Jr, W.S., Offeman, R.E. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
Hunger, M., Hüsken, G., Brouwers, H. 2010. Photocatalytic degradation of air pollutants—From modeling to large scale application. Cement and Concrete Research, 40(2), 313-320.
Ichihashi, Y., Okemoto, A., Obata, K., Taniya, K., Nishiyama, S. 2016. Photocatalytic Decomposition of NH3 Over Fe-Doped TiO2 Prepared by Solid-State Impregnation. in: Nanostructured Photocatalysts: Advanced Functional Materials, (Eds.) H. Yamashita, H. Li, Springer International Publishing. Cham, pp. 201-209.
Irie, H., Miura, S., Kamiya, K., Hashimoto, K. 2008. Efficient visible light-sensitive photocatalysts: grafting Cu (II) ions onto TiO2 and WO3 photocatalysts. Chemical Physics Letters, 457(1), 202-205.
Islam, M., Zalikha, N., Kosslick, H., Zainuddin, M.T., Zubir, Z.A., Nazri, A.A., Azrolsani, S., Malek, A., Zahid, M., Ezwan, M. 2016. Effect of Single and Bimetallic Ni, V and Mn Transition Metal Ion Doping on the Properties of Anatase/Brookite TiO2 Photocatalyst. Advanced Materials Research. Trans Tech Publ. pp. 527-531.
Ismail, A.A., Geioushy, R.A., Bouzid, H., Al-Sayari, S.A., Al-Hajry, A., Bahnemann, D.W. 2013. TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency. Applied Catalysis B: Environmental, 129, 62-70.
Jakob, M., Levanon, H., Kamat, P.V. 2003. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Letters, 3(3), 353-358.
Jeong, H., Jin, M., So, K., Lim, S., Lee, Y. 2009. Tailoring the characteristics of graphite oxides by different oxidation times. Journal of Physics D: Applied Physics, 42(6), 065418.
Jiang, B., Tian, C., Pan, Q., Jiang, Z., Wang, J.-Q., Yan, W., Fu, H. 2011a. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets. The Journal of Physical Chemistry C, 115(48), 23718-23725.
Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., Wei, W., Tang, H. 2011b. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon, 49(8), 2693-2701.
Jo, W.-K., Kang, H.-J. 2013. Titanium dioxide–graphene oxide composites with different ratios supported by Pyrex tube for photocatalysis of toxic aromatic vapors. Powder Technology, 250, 115-121.
Jo, W.-K., Won, Y., Hwang, I., Tayade, R.J. 2014. Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon–TiO2 composites. Industrial & Engineering Chemistry Research, 53(9), 3455-3461.
Jones, A.P. 1999. Indoor air quality and health. Atmospheric Environment, 33(28), 4535-4564.
Kamegawa, T., Yamahana, D., Yamashita, H. 2010. Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of photocatalytic activity. The Journal of Physical Chemistry C, 114(35), 15049-15053.
Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., Dingenen, R.V., Ervens, B., Nenes, A., Nielsen, C. 2005. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5(4), 1053-1123.
Kandiah, K., Muthusamy, P., Mohan, S., Venkatachalam, R. 2014. TiO2–graphene nanocomposites for enhanced osteocalcin induction. Materials Science and Engineering: C, 38, 252-262.
Kartheuser, B., Costarramone, N., Pigot, T., Lacombe, S. 2012. NORMACAT project: normalized closed chamber tests for evaluation of photocatalytic VOC treatment in indoor air and formaldehyde determination. Environmental Science and Pollution Research, 19(9), 3763-3771.
Kemp, K.C., Seema, H., Saleh, M., Le, N.H., Mahesh, K., Chandra, V., Kim, K.S. 2013. Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 5(8), 3149-3171.
Kibanova, D., Sleiman, M., Cervini-Silva, J., Destaillats, H. 2012. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. Journal of hazardous materials, 211, 233-239.
Kim, B.-M., Yadav, H.M., Kim, J.-S. 2016. Photocatalytic Degradation of Gaseous Benzene on Photodeposited Ag–TiO2 Nanoparticles. Journal of Nanoscience and Nanotechnology, 16(10), 10991-10997.
Kim, D.I., Park, J.H., Do Kim, S., Lee, J.-Y., Yim, J.-H., Jeon, J.-K., Park, S.H., Park, Y.-K. 2011a. Comparison of removal ability of indoor formaldehyde over different materials functionalized with various amine groups. Journal of Industrial and Engineering Chemistry, 17(1), 1-5.
Kim, H.-i., Moon, G.-h., Monllor-Satoca, D., Park, Y., Choi, W. 2011b. Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. The Journal of Physical Chemistry C, 116(1), 1535-1543.
Kim, S.S., Park, K.H., Hong, S.C. 2011c. A study on HCHO oxidation characteristics at room temperature using a Pt/TiO2 catalyst. Applied Catalysis A: General, 398(1), 96-103.
Kisliuk, P. 1957. The sticking probabilities of gases chemisorbed on the surfaces of solids. Journal of Physics and Chemistry of Solids, 3(1-2), 95-101.
Klauson, D., Portjanskaya, E., Budarnaja, O., Krichevskaya, M., Preis, S. 2010. The synthesis of sulphur and boron-containing titania photocatalysts and the evaluation of their photocatalytic activity. Catalysis Communications, 11(8), 715-720.
Korologos, C.A., Philippopoulos, C.J., Poulopoulos, S.G. 2011. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmospheric environment, 45(39), 7089-7095.
Krunks, M., Oja, I., Tőnsuaadu, K., Es-Souni, M., Gruselle, M., Niinistö, L. 2005. Thermoanalytical study of acetylacetonate-modified titanium (IV) isopropoxide as a precursor for TiO2 films. Journal of thermal analysis and calorimetry, 80(2), 483-488.
Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H. 2012. A green approach for the reduction of graphene oxide by wild carrot root. Carbon, 50(3), 914-921.
Kurtoglu, M.E., Longenbach, T., Gogotsi, Y. 2011. Preventing sodium poisoning of photocatalytic TiO2 films on glass by metal doping. International Journal of Applied Glass Science, 2(2), 108-116.
Kwon, D.W., Seo, P.W., Kim, G.J., Hong, S.C. 2015. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: the effect of relative humidity on catalytic activity. Applied Catalysis B: Environmental, 163, 436-443.
López, R., Gómez, R. 2012. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of sol-gel science and technology, 61(1), 1-7.
Lalitha, K., Reddy, J.K., Phanikrishna Sharma, M.V., Kumari, V.D., Subrahmanyam, M. 2010. Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol:water mixtures under solar irradiation: A structure–activity correlation. International Journal of Hydrogen Energy, 35(9), 3991-4001.
Lambert, T.N., Chavez, C.A., Bell, N.S., Washburn, C.M., Wheeler, D.R., Brumbach, M.T. 2011. Large area mosaic films of graphene–titania: self-assembly at the liquid–air interface and photo-responsive behavior. Nanoscale, 3(1), 188-191.
Lambert, T.N., Chavez, C.A., Hernandez-Sanchez, B., Lu, P., Bell, N.S., Ambrosini, A., Friedman, T., Boyle, T.J., Wheeler, D.R., Huber, D.L. 2009. Synthesis and characterization of titania-graphene nanocomposites. Journal of Physical Chemistry C, 113(46), 19812-19823.
Lebrun, N., Dhamelincourt, P., Focsa, C., Chazallon, B., Destombes, J., Prevost, D. 2003. Raman analysis of formaldehyde aqueous solutions as a function of concentration. Journal of Raman Spectroscopy, 34(6), 459-464.
Lee, D.-S., Park, S.-J. 2015. Water-mediated modulation of TiO2 decorated with graphene for photocatalytic degradation of trichloroethylene. Current Applied Physics, 15(2), 144-148.
Li, N., Liu, G., Zhen, C., Li, F., Zhang, L., Cheng, H.M. 2011a. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template‐free self‐assembly. Advanced Functional Materials, 21(9), 1717-1722.
Li, Y., Zhang, C., He, H. 2017. Significant enhancement in activity of Pd/TiO2 catalyst for formaldehyde oxidation by Na addition. Catalysis Today, 281, 412-417.
Li, Z., Wang, J., Liu, X., Liu, S., Ou, J., Yang, S. 2011b. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. Journal of Materials Chemistry, 21(10), 3397-3403.
Liang, D., Cui, C., Hu, H., Wang, Y., Xu, S., Ying, B., Li, P., Lu, B., Shen, H. 2014. One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. Journal of Alloys and Compounds, 582, 236-240.
Liang, W., Li, J., Jin, Y. 2012. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Building and Environment, 51, 345-350.
Liang, Y.T., Vijayan, B.K., Gray, K.A., Hersam, M.C. 2011. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano letters, 11(7), 2865-2870.
Lin, Y.-H., Chiu, T.-C., Hsueh, H.-T., Chu, H. 2011. N-doped TiO2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light. Applied Surface Science, 258(4), 1581-1586.
Lin, Y.-H., Hsueh, H.-T., Chang, C.-W., Chu, H. 2016. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2: Characterization, kinetics, and reaction pathways. Applied Catalysis B: Environmental, 199, 1-10.
Lin, Y.-H., Tseng, T.-K., Chu, H. 2014. Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO2 under visible-light irradiation. Applied Catalysis A: General, 469, 221-228.
Lin, Z., Yao, Y., Li, Z., Liu, Y., Li, Z., Wong, C.-P. 2010. Solvent-assisted thermal reduction of graphite oxide. The Journal of Physical Chemistry C, 114(35), 14819-14825.
Linsebigler, A.L., Lu, G., Yates Jr, J.T. 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758.
Liu, J., Bai, H., Wang, Y., Liu, Z., Zhang, X., Sun, D.D. 2010. Self‐Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two‐Phase Interface and Their Anti‐Recombination in Photocatalytic Applications. Advanced Functional Materials, 20(23), 4175-4181.
Liu, R., Wang, J., Zhang, J., Xie, S., Wang, X., Ji, Z. 2017. Honeycomb-like micro-mesoporous structure TiO2/sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous and Mesoporous Materials.
Liu, S., Sun, H., Liu, S., Wang, S. 2013. Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chemical Engineering Journal, 214, 298-303.
Lockwood, D.J. 2005. Nanostructure Science and Technology, Springer.
Loh, K.P., Bao, Q., Eda, G., Chhowalla, M. 2010. Graphene oxide as a chemically tunable platform for optical applications. Nature chemistry, 2(12), 1015-1024.
Lu, N., Pei, J., Zhao, Y., Qi, R., Liu, J. 2012. Performance of a biological degradation method for indoor formaldehyde removal. Building and Environment, 57, 253-258.
Lu, T., Zhang, R., Hu, C., Chen, F., Duo, S., Hu, Q. 2013. TiO2–graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Physical Chemistry Chemical Physics, 15(31), 12963-12970.
Lu, Y., Wang, D., Ma, C., Yang, H. 2010. The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde. Building and Environment, 45(3), 615-621.
Ma, C., Pang, G., He, G., Li, Y., He, C., Hao, Z. 2016. Layered sphere-shaped TiO2 capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation. Journal of Environmental Sciences, 39, 77-85.
Madarász, J., Brăileanu, A., Crişan, M., Pokol, G. 2009. Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG–FTIR and TG/DTA–MS in air: part 2. Precursor from thiourea and titanium (IV)-n-butoxide. Journal of Analytical and Applied Pyrolysis, 85(1), 549-556.
Mahmoudi, M. 2016. Sick Building Syndrome. in: Allergy and Asthma, Springer, pp. 443-449.
Maira, A.J., Yeung, K.L., Lee, C.Y., Yue, P.L., Chan, C.K. 2000. Size Effects in Gas-Phase Photo-oxidation of Trichloroethylene Using Nanometer-Sized TiO2 Catalysts. Journal of Catalysis, 192(1), 185-196.
Masel, R.I. 1996. Principles of adsorption and reaction on solid surfaces. John Wiley & Sons.
Mattox, D.M. 2010. Handbook of physical vapor deposition (PVD) processing. William Andrew.
Mendes, A., Teixeira, J.P. 2014. Sick building syndrome.
Minella, M., Sordello, F., Minero, C. 2016. Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catalysis Today.
Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R. 2009. Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmospheric Environment, 43(14), 2229-2246.
Mo, S.-D., Ching, W. 1995. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical Review B, 51(19), 13023.
Momeni, M., Ghayeb, Y., Ghonchegi, Z. 2016. Photocatalytic properties of Cr–TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surface Engineering, 32(7), 520-525.
Moret, S., Dyson, P.J., Laurenczy, G. 2014. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature communications, 5.
Mozia, S., Toyoda, M., Inagaki, M., Tryba, B., Morawski, A.W. 2007. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor. Journal of hazardous materials, 140(1), 369-375.
Na, K., Cocker, D.R. 2008. Fine organic particle, formaldehyde, acetaldehyde concentrations under and after the influence of fire activity in the atmosphere of Riverside, California. Environmental Research, 108(1), 7-14.
Nakata, K., Fujishima, A. 2012. TiO 2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
Nam, W.S., Han, G.Y. 2003. Characterization and photocatalytic performance of nanosize TiO2 powders prepared by the solvothermal method. Korean Journal of Chemical Engineering, 20(6), 1149-1153.
Nath, R.K., Zain, M.F.M., Jamil, M. 2016. An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: A review. Renewable and Sustainable Energy Reviews, 62, 1184-1194.
Nawaz, M., Miran, W., Jang, J., Lee, D.S. 2017. One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Applied Catalysis B: Environmental, 203, 85-95.
Nethravathi, C., Rajamathi, M. 2008. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 46(14), 1994-1998.
Nguyen-Phan, T.D., Pham, V.H., Shin, E.W., Pham, H.D., Kim, S., Chung, J.S., Kim, E.J., Hur, S.H. 2011. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1), 226-232.
Nguyen, P.T.N., Salim, C., Kurniawan, W., Hinode, H. 2014. A non-hydrolytic sol–gel synthesis of reduced graphene oxide/TiO2 microsphere photocatalysts. Catalysis Today, 230, 166-173.
Nielsen, G.D., Larsen, S.T., Wolkoff, P. 2013. Recent trend in risk assessment of formaldehyde exposures from indoor air. Archives of toxicology, 87(1), 73-98.
Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., Geim, A. 2005. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451-10453.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. 2004. Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
Nowotny, J. 2011. Oxide semiconductors for solar energy conversion: titanium dioxide. CRC Press.
Obraztsov, A., Obraztsova, E., Tyurnina, A., Zolotukhin, A. 2007. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45(10), 2017-2021.
Oestreich, D., Lautenschütz, L., Arnold, U., Sauer, J. 2017. Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde. Chemical Engineering Science, 163, 92-104.
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M. 2004. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 265(1), 115-121.
Ohtani, B. 2010. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157-178.
Pagáčová, J., Plško, A., Michalková, K., Zemanová, V., Papučová, I. 2016. The Influence of “Small Molecules” on Crystallization of TiO2 Xerogels. Procedia Engineering, 136, 280-286.
Pais, I., Jones Jr, J.B. 1997. The handbook of trace elements. CRC Press.
Pan, N., Guan, D., Yang, Y., Huang, Z., Wang, R., Jin, Y., Xia, C. 2014. A rapid low-temperature synthetic method leading to large-scale carboxyl graphene. Chemical Engineering Journal, 236, 471-479.
Paredes, J., Villar-Rodil, S., Martínez-Alonso, A., Tascon, J. 2008. Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560-10564.
Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S. 2009. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano letters, 9(4), 1593-1597.
Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., Ruoff, R.S. 2011. Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019-3023.
Pastrana-Martínez, L.M., Morales-Torres, S., Likodimos, V., Figueiredo, J.L., Faria, J.L., Falaras, P., Silva, A.M.T. 2012. Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental, 123–124, 241-256.
Paz, Y. 2010. Application of TiO2 photocatalysis for air treatment: Patents’ overview. Applied Catalysis B: Environmental, 99(3–4), 448-460.
Pei, J., Han, X., Lu, Y. 2015. Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst. Building and Environment, 84, 134-141.
Pei, J., Zhang, J.S. 2011a. Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. Hvac&R Research, 17(4), 476-503.
Pei, J., Zhang, J.S. 2011b. On the performance and mechanisms of formaldehyde removal by chemi-sorbents. Chemical Engineering Journal, 167(1), 59-66.
Pei, S., Cheng, H.-M. 2012. The reduction of graphene oxide. Carbon, 50(9), 3210-3228.
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A., O'shea, K. 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331-349.
Perera, F.P., Petito, C. 1982. Formaldehyde: a question of cancer policy. AAAS.
Poljansek, I., Krajnc, M. 2005. Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica, 52(3), 238.
Portela, R., Jansson, I., Suárez, S., Villarroel, M., Sánchez, B., Avila, P. 2017. Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chemical Engineering Journal, 310, 560-570.
Qi, L., Cheng, B., Yu, J., Ho, W. 2016. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature. Journal of Hazardous Materials, 301, 522-530.
Quiroz Torres, J., Royer, S., Bellat, J.P., Giraudon, J.M., Lamonier, J.F. 2013. Formaldehyde: catalytic oxidation as a promising soft way of elimination. ChemSusChem, 6(4), 578-592.
Rao, C.e.N.e.R., Sood, A.e.K., Subrahmanyam, K.e.S., Govindaraj, A. 2009. Graphene: the new two‐dimensional nanomaterial. Angewandte Chemie International Edition, 48(42), 7752-7777.
Raskó, J., Kecskés, T., Kiss, J. 2004. Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry. Journal of Catalysis, 226(1), 183-191.
Ren, P.-G., Yan, D.-X., Ji, X., Chen, T., Li, Z.-M. 2010. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 22(5), 055705.
Rengifo-Herrera, J.A., Pulgarin, C. 2010. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Solar Energy, 84(1), 37-43.
Reuss, G., Disteldorf, W., Gamer, A.O., Hilt, A. 2000. Formaldehyde. Ullmann's Encyclopedia of Industrial Chemistry.
Revah, S., Morgan-Sagastume, J.M. 2005. Methods of Odor and VOC Control. in: Biotechnology for Odor and Air Pollution Control, (Eds.) Z. Shareefdeen, A. Singh, Springer Berlin Heidelberg. Berlin, Heidelberg, pp. 29-63.
Robinson, J., Nelson, W. 1995. National human activity pattern survey data base. USEPA, Research Triangle Park, NC.
Rong, X., Qiu, F., Zhang, C., Fu, L., Wang, Y., Yang, D. 2015. Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceramics International, 41(2, Part A), 2502-2511.
Saini, K., Sharma, S.D., Kar, M., Singh, D., Sharma, C. 2007. Structural and optical properties of TiO2 thin films derived by sol–gel dip coating process. Journal of non-crystalline solids, 353(24), 2469-2473.
Sakai, H., Baba, R., Hashimoto, K., Fujishima, A., Heller, A. 1995. Local Detection of Photoelectrochemically Produced H2O2 with a" Wired" Horseradish Peroxidase Microsensor. The Journal of Physical Chemistry, 99(31), 11896-11900.
Salthammer, T. 2015. The formaldehyde dilemma. International Journal of Hygiene and Environmental Health, 218(4), 433-436.
Salthammer, T. 2013. Formaldehyde in the ambient atmosphere: from an indoor pollutant to an outdoor pollutant? Angewandte Chemie International Edition, 52(12), 3320-3327.
Salthammer, T., Fuhrmann, F., Kaufhold, S., Meyer, B., Schwarz, A. 1995. Effects of climatic parameters on formaldehyde concentrations in indoor air. Indoor Air, 5(2), 120-128.
Salthammer, T., Mentese, S., Marutzky, R. 2010. Formaldehyde in the indoor environment. Chemical Reviews, 110(4), 2536-2572.
Sarathy, S.M., Oßwald, P., Hansen, N., Kohse-Höinghaus, K. 2014. Alcohol combustion chemistry. Progress in Energy and Combustion Science, 44, 40-102.
Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K. 2007. Detection of individual gas molecules adsorbed on graphene. Nature materials, 6(9), 652-655.
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W. 2014. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 114(19), 9919-9986.
Schnelle Jr, K.B., Dunn, R.F., Ternes, M.E. 2015. Air pollution control technology handbook. CRC press.
Seinfeld, J.H., Pandis, S.N. 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Sellappan, R., Sun, J., Galeckas, A., Lindvall, N., Yurgens, A., Kuznetsov, A.Y., Chakarov, D. 2013. Influence of graphene synthesizing techniques on the photocatalytic performance of graphene–TiO2 nanocomposites. Physical Chemistry Chemical Physics, 15(37), 15528-15537.
Sha, L.-Z., Zhao, H.-F., Xiao, G.-N. 2013. Photocatalytic degradation of formaldehyde by silk mask paper loading nanometer titanium dioxide. Fibers and Polymers, 14(6), 976-981.
Shanmugam, M., Alsalme, A., Alghamdi, A., Jayavel, R. 2016. In-situ microwave synthesis of graphene–TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants. Journal of Photochemistry and Photobiology B: Biology, 163, 216-223.
Shen, J., Yan, B., Shi, M., Ma, H., Li, N., Ye, M. 2011. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. Journal of Materials Chemistry, 21(10), 3415-3421.
Sher Shah, M.S.A., Park, A.R., Zhang, K., Park, J.H., Yoo, P.J. 2012. Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS applied materials & interfaces, 4(8), 3893-3901.
Shi-Jia, M., Yu-Chang, S., Li-Hua, X., Si-Dong, L., Te, H., Hong-Bo, T. 2013. X-Ray Difraction Pattern of Graphite Oxide. Chinese Physics Letters, 30(9), 096101.
Singer, F. 2013. Industrial ceramics. Springer.
Sinnott, R.K. 2009. Chemical engineering design: SI Edition. Elsevier.
Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.-M. 2009. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 86(3), 159-165.
Somani, P.R., Somani, S.P., Umeno, M. 2006. Planer nano-graphenes from camphor by CVD. Chemical Physics Letters, 430(1), 56-59.
Spengler, J.D., Sexton, K. 1983. Indoor air pollution: a public health perspective. Science, 221(4605), 9-17.
Srinivas, G., Burress, J., Yildirim, T. 2012. Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy & Environmental Science, 5(4), 6453-6459.
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
Steinfeld, J.I., Francisco, J.S., Hase, W.L. 1989. Chemical kinetics and dynamics. Prentice Hall Englewood Cliffs (New Jersey).
Štengl, V., Bakardjieva, S., Grygar, T.M., Bludská, J., Kormunda, M. 2013. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chemistry Central Journal, 7(1), 41.
Štengl, V.c., Popelková, D., Vláčil, P. 2011. TiO2–graphene nanocomposite as high performace photocatalysts. The Journal of Physical Chemistry C, 115(51), 25209-25218.
Sun, L., Zhao, Z., Zhou, Y., Liu, L. 2012. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale, 4(2), 613-620.
Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z., Li, C. 2010a. Photocatalytic oxidation of gaseous formaldehyde on TiO2: an in situ DRIFTS study. Catalysis letters, 137(3-4), 239-246.
Sun, X., Liu, H., Dong, J., Wei, J., Zhang, Y. 2010b. Preparation and characterization of Ce/N-Codoped TiO2 particles for production of H2 by photocatalytic splitting water under visible light. Catalysis letters, 135(3-4), 219-225.
Tachikawa, T., Fujitsuka, M., Majima, T. 2007. Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. The Journal of Physical Chemistry C, 111(14), 5259-5275.
Tamiolakis, I., Lykakis, I.N., Armatas, G.S. 2015. Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: selective aerobic oxidation of benzyl alcohols. Catalysis Today, 250, 180-186.
Tan, L.-L., Ong, W.-J., Chai, S.-P., Goh, B.T., Mohamed, A.R. 2015a. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Applied Catalysis B: Environmental, 179, 160-170.
Tan, L.-L., Ong, W.-J., Chai, S.-P., Mohamed, A.R. 2015b. Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Applied Catalysis B: Environmental, 166–167, 251-259.
Tang, F., Yang, X. 2012. A “deactivation” kinetic model for predicting the performance of photocatalytic degradation of indoor toluene, o-xylene, and benzene. Building and Environment, 56, 329-334.
Tao, H., Liang, X., Zhang, Q., Chang, C.-T. 2015. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen. Applied Surface Science, 324, 258-264.
Tavares, J., Swanson, E.J., Coulombe, S. 2008. Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion. Plasma Processes and Polymers, 5(8), 759-769.
Thomas, R.T., Rasheed, P.A., Sandhyarani, N. 2014. Synthesis of nanotitania decorated few-layer graphene for enhanced visible light driven photocatalysis. Journal of colloid and interface science, 428, 214-221.
Tian, H., Shen, K., Hu, X., Qiao, L., Zheng, W. 2017. N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. Journal of Alloys and Compounds, 691, 369-377.
Tietenberg, T.H., Lewis, L. 2016. Environmental and natural resource economics. Routledge.
Trapalis, A., Todorova, N., Giannakopoulou, T., Boukos, N., Speliotis, T., Dimotikali, D., Yu, J. 2016. TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Applied Catalysis B: Environmental, 180, 637-647.
Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A.C., Geim, A.K., Novoselov, K.S., Galiotis, C. 2009. Subjecting a graphene monolayer to tension and compression. small, 5(21), 2397-2402.
Turchi, C.S., Ollis, D.F. 1990. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of catalysis, 122(1), 178-192.
Umebayashi, T., Yamaki, T., Itoh, H., Asai, K. 2002. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids, 63(10), 1909-1920.
Vannice, M.A. 2007. An analysis of the Mars–van Krevelen rate expression. Catalysis Today, 123(1), 18-22.
Verbruggen, S.W. 2015. TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 64-82.
Viana, M., Soares, V., Mohallem, N. 2010. Synthesis and characterization of TiO2 nanoparticles. Ceramics International, 36(7), 2047-2053.
Vicens, J., Böhmer, V. 2012. Calixarenes: a versatile class of macrocyclic compounds. Springer Science & Business Media.
Viculis, L.M., Mack, J.J., Kaner, R.B. 2003. A chemical route to carbon nanoscrolls. Science, 299(5611), 1361-1361.
Vincent, G., Marquaire, P.-M., Zahraa, O. 2009. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: Kinetic modelling and pathways. Journal of Hazardous Materials, 161(2), 1173-1181.
Wang, H., Robinson, J.T., Li, X., Dai, H. 2009. Solvothermal reduction of chemically exfoliated graphene sheets. Journal of the American Chemical Society, 131(29), 9910-9911.
Wang, J., Kondrat, S.A., Wang, Y., Brett, G.L., Giles, C., Bartley, J.K., Lu, L., Liu, Q., Kiely, C.J., Hutchings, G.J. 2015. Au–Pd Nanoparticles Dispersed on Composite Titania/Graphene Oxide-Supports as a Highly Active Oxidation Catalyst. ACS Catalysis, 5(6), 3575-3587.
Wang, P., Wang, J., Wang, X., Yu, H., Yu, J., Lei, M., Wang, Y. 2013a. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 132–133, 452-459.
Wang, S., Ang, H., Tade, M.O. 2007. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environment international, 33(5), 694-705.
Wang, W., Yu, J., Xiang, Q., Cheng, B. 2012. Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental, 119–120, 109-116.
Wang, Y., He, Y., Lai, Q., Fan, M. 2014a. Review of the progress in preparing nano TiO2: An important environmental engineering material. Journal of Environmental Sciences, 26(11), 2139-2177.
Wang, Y., Yu, J., Xiao, W., Li, Q. 2014b. Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production. Journal of Materials Chemistry A, 2(11), 3847-3855.
Wang, Z., Pei, J., Zhang, J. 2013b. Catalytic oxidization of indoor formaldehyde at room temperature–Effect of operation conditions. Building and Environment, 65, 49-57.
Warwick, M.E., Dunnill, C.W., Goodall, J., Darr, J.A., Binions, R. 2011. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films. Thin Solid Films, 519(18), 5942-5948.
Wisitsoraat, A., Tuantranont, A., Comini, E., Sberveglieri, G., Wlodarski, W. 2009. Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films, 517(8), 2775-2780.
World Health Organization. 1987. Air quality Guidelines for Europe. Copenhagen: World Health Organization Regional Office for Europe, 105-17.
World Health Organization. 1983. Indoor air pollutants: exposure and health effects. EURO reports and studies, 78, 1-42.
Wu, Z.-S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H.-M. 2009. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47(2), 493-499.
Xiang, Q., Yu, J., Jaroniec, M. 2011a. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3(9), 3670-3678.
Xiang, Q., Yu, J., Jaroniec, M. 2011b. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Physical Chemistry Chemical Physics, 13(11), 4853-4861.
Xie, G., Zhang, K., Guo, B., Liu, Q., Fang, L., Gong, J.R. 2013. Graphene‐Based Materials for Hydrogen Generation from Light‐Driven Water Splitting. Advanced Materials, 25(28), 3820-3839.
Xie, R.-C., Shang, J.K. 2007. Morphological control in solvothermal synthesis of titanium oxide. Journal of materials science, 42(16), 6583-6589.
Xu, B., Zhu, T., Tang, X., Shang, J. 2010a. Heterogeneous reaction of formaldehyde on the surface of TiO2 particles. Science China Chemistry, 53(12), 2644-2651.
Xu, Q., Zhang, Y., Mo, J., Li, X. 2011. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence. Environmental science & technology, 45(13), 5754-5760.
Xu, Y.-J., Zhuang, Y., Fu, X. 2010b. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange. The Journal of Physical Chemistry C, 114(6), 2669-2676.
Yadav, H.M., Kim, J.-S. 2016. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. Journal of Alloys and Compounds, 688, 123-129.
Yan, W.-Y., Zhou, Q., Chen, X., Huang, X.-J., Wu, Y.-C. 2016. C-doped and N-doped reduced graphene oxide/TiO2 composites with exposed (001) and (101) facets controllably synthesized by a hydrothermal route and their gas sensing characteristics. Sensors and Actuators B: Chemical, 230, 761-772.
Yang, L., Liu, Z., Shi, J., Hu, H., Shangguan, W. 2007. Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde. Catalysis Today, 126(3), 359-368.
Yang, M.-Q., Zhang, N., Pagliaro, M., Xu, Y.-J. 2014. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chemical Society Reviews, 43(24), 8240-8254.
Yeh, T.F., Teng, C.Y., Chen, S.J., Teng, H. 2014. Nitrogen‐Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water‐Splitting under Visible Light Illumination. Advanced Materials, 26(20), 3297-3303.
Yu, B., He, W., Li, N., Zhou, F., Shen, Z., Chen, H., Xu, G. 2017. Experiments and kinetics of solar PCO for indoor air purification in PCO/TW system. Building and Environment, 115, 130-146.
Yu, B., Wang, X., Qian, X., Xing, W., Yang, H., Ma, L., Lin, Y., Jiang, S., Song, L., Hu, Y. 2014a. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. Rsc Advances, 4(60), 31782-31794.
Yu, C., Crump, D. 1998. A review of the emission of VOCs from polymeric materials used in buildings. Building and Environment, 33(6), 357-374.
Yu, H., Irie, H., Shimodaira, Y., Hosogi, Y., Kuroda, Y., Miyauchi, M., Hashimoto, K. 2010. An efficient visible-light-sensitive Fe (III)-grafted TiO2 photocatalyst. The Journal of Physical Chemistry C, 114(39), 16481-16487.
Yu, I.T.-S., Lee, N.L., Wong, T.W. 2005. Knowledge, attitude and practice regarding organic solvents among printing workers in Hong Kong. Journal of occupational health, 47(4), 305-310.
Yu, J.-G., Yu, H.-G., Cheng, B., Zhao, X.-J., Yu, J.C., Ho, W.-K. 2003. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. The Journal of Physical Chemistry B, 107(50), 13871-13879.
Yu, K.-P., Lee, G.W.-M., Hung, A.-J. 2014b. Removal of indoor α-pinene with a fiber optic illuminated honeycomb monolith photocatalytic reactor. Journal of Environmental Science and Health, Part A, 49(10), 1110-1115.
Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J. 2010a. P25-graphene composite as a high performance photocatalyst. ACS Nano, 4(1), 380-386.
Zhang, H., Pan, X., Liu, J.J., Qian, W., Wei, F., Huang, Y., Bao, X. 2011a. Enhanced Catalytic Activity of Sub‐nanometer Titania Clusters Confined inside Double‐Wall Carbon Nanotubes. ChemSusChem, 4(7), 975-980.
Zhang, J., Nosaka, Y. 2014. Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. The Journal of Physical Chemistry C, 118(20), 10824-10832.
Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., Guo, S. 2010b. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 46(7), 1112-1114.
Zhang, L., Freeman, L.E.B., Nakamura, J., Hecht, S.S., Vandenberg, J.J., Smith, M.T., Sonawane, B.R. 2010c. Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. Environmental and molecular mutagenesis, 51(3), 181-191.
Zhang, Q., Zheng, D.D., Xu, L.S., Chang, C.-T. 2016. Photocatalytic conversion of terephthalic acid preparation wastewater to hydrogen by graphene-modified TiO2. Catalysis Today, 274, 8-14.
Zhang, Y., Hou, X., Sun, T., Zhao, X. 2017. Calcination of reduced graphene oxide decorated TiO2 composites for recovery and reuse in photocatalytic applications. Ceramics International, 43(1, Part B), 1150-1159.
Zhang, Y., Tang, Z.-R., Fu, X., Xu, Y.-J. 2011b. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS nano, 5(9), 7426-7435.
Zhang, Y., Tang, Z.-R., Fu, X., Xu, Y.-J. 2010d. TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials? ACS nano, 4(12), 7303-7314.
Zhang, Y., Zhang, N., Tang, Z.-R., Xu, Y.-J. 2012. Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Physical Chemistry Chemical Physics, 14(25), 9167-9175.
Zhang, Z., Xiao, F., Guo, Y., Wang, S., Liu, Y. 2013. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS applied materials & interfaces, 5(6), 2227-2233.
Zhao, F., Dong, B., Gao, R., Su, G., Liu, W., Shi, L., Xia, C., Cao, L. 2015. A three-dimensional graphene-TiO2 nanotube nanocomposite with exceptional photocatalytic activity for dye degradation. Applied Surface Science, 351, 303-308.
Zhao, J., Yang, X. 2003. Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment, 38(5), 645-654.
Zhong, L., Haghighat, F., Blondeau, P., Kozinski, J. 2010. Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications. Building and Environment, 45(12), 2689-2697.
Zhou, X., Liu, Y., Song, C., Liu, J. 2016. A study on the formaldehyde emission parameters of porous building materials based on adsorption potential theory. Building and Environment, 106, 254-264.
Zhu, P., Nair, A.S., Shengjie, P., Shengyuan, Y., Ramakrishna, S. 2012. Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS applied materials & interfaces, 4(2), 581-585.
Zhu, X., Chang, D.-L., Li, X.-S., Sun, Z.-G., Deng, X.-Q., Zhu, A.-M. 2015a. Inherent rate constants and humidity impact factors of anatase TiO2 film in photocatalytic removal of formaldehyde from air. Chemical Engineering Journal, 279, 897-903.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S. 2010. Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.
Zhu, Y., Wang, Y., Yao, W., Zong, R., Zhu, Y. 2015b. New insights into the relationship between photocatalytic activity and TiO2–GR composites. RSC Advances, 5(37), 29201-29208.
Zumdahl, S.S., DeCoste, D.J. 2012. Chemical principles. Nelson Education.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw