系統識別號 U0026-1806201323404000
論文名稱(中文) 以知覺網站複雜度結合任務科技配適理論探討行動網站之採用
論文名稱(英文) Examining the Intention to Reuse Mobile Websites: The Perspectives of Perceived Website Complexity and the Task-Technology Fit
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 101
學期 2
出版年 102
研究生(中文) 陳品諺
研究生(英文) Pin-Yan Chen
學號 r76001011
學位類別 碩士
語文別 中文
論文頁數 135頁
口試委員 指導教授-王維聰
中文關鍵字 任務科技配適理論  知覺網站複雜度  科技準備度  持續使用意圖 
英文關鍵字 task-technology fit theory  perceived website complexity  technology readiness  intention to use 
中文摘要 在行動上網人數激增之下,行動資訊服務發展快速,使得行動網站快速興起也廣泛被運用於生活中,也因為有眾多的行動網站可以選擇,因此對於行動網站服務提供者而言,若是使用者對於行動網站沒有依賴性便會使得使用者轉換成本很低,則行動網站服務提供者可能流失舊有的使用者,因此如何保留住行動網站使用者,讓使用者願意持續採用該行動網站,是一個重要的議題。
本研究提出的架構,是針對使用行動網站的使用者進行問卷調查,共收集570份有效問卷。並以結構方程模式中的部份最小平方法(partial least-square)來驗證。其研究結果顯示,科技準備度對於任務科技配適度有正向顯著的影響;知覺動態複雜度對任務科技配適度有負向顯著影響;任務特徵對於任務科技配適度有正向顯著的影響;任務科技配適度對使用者滿意度及使用意圖有正向顯著影響;使用者滿意度正向顯著影響使用意圖。本研究實證出行動網站的採用,不只有受科技的觀點影響,也受到個人及任務特徵的影響,研究結果也可做為行動網站服務提供者相關實務之依據。
英文摘要 The increase of mobile Internet users and the progress of mobile information services have contributed to an increase in mobile websites.Switching costs will be low for mobile website service providers if users are dependent onmobile websites, which would also result in mobile website service providers’ losing their original users. Therefore, finding a method by which to capture mobile internet users and makethem willing to use the same mobile websites over and over again is an important issue.
Prior studies discussing mobile websites have mainly focused on their design. However, there are some other factors that need to be taken into consideration other than design. This study explored mobile website through personal features, as well as through the technological and task characteristics of mobile technology. Perceived website complexity is an important factor for identifying interface design simplicity.In the case ofmobile websites, auser friendly interface will be a key factorrelated to ease of use. This study uses perceived website complexity, along with task-technology fit theory, to explore continuing use of mobile websites.
Based on 570questionnaires filled out by mobile website users, this study applied PLS(partial least-square) to investigate the proposed model. The results indicate that technology readiness has apositive influenceon task-technology fit; perceived dynamic complexity negatively influences task-technology fit;task characteristics havea positive influence on task-technology fit;task technology fit has a positive influence on user satisfaction; task technology fit has apositive influence on users’ intention to use, anduser satisfaction has a positive influenceon users’ intention to use. The results indicate that use of mobile websitesis not only influenced by technology, butis also significantly impacted by both individual and task characteristics.The research results can serve as a practical reference for mobile website service providers.
論文目次 目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 VIII
第一章 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究範圍與限制 4
第四節 研究流程 4
第二章 文獻探討 6
第一節 行動網站 6
2.1.1行動網站定義 6
2.1.2行動網站與一般網站之比較 9
第二節 知覺網站複雜度 13
2.2.1知覺網站複雜度(perceived website complexity) 13
2.2.2知覺網站複雜度構成要素 14
第三節 科技準備度(Technology Readiness,TR) 17
第四節 任務科技配適模型 19
2.4.1過去研究方向 19
2.4.2科技績效鏈 21
第五節 使用者滿意度 32
2.5.1使用者滿意度 32
2.5.2使用者滿意度與行動網站 32
第六節 小結 33
第三章 研究方法 35
第一節 研究模型 35
第二節 研究假說 37
3.2.1 科技準備度與任務科技配適度 37
3.2.2 知覺網站複雜度與任務科技配適度 38
3.2.3任務與任務科技配適度 40
3.2.4任務科技配適度與滿意度 41
3.2.5滿意度與使用意圖 41
3.2.6任務與任務科技配適度與使用意圖 42
第三節 問卷設計 46
3.2.1 科技準備度 47
3.2.2知覺網站複雜度 50
3.2.3任務特徵 52
3.2.4任務科技配適 53
3.2.5滿意度 54
3.2.6使用意圖 55
第四節 前測與資料分析 56
3.4.1前測 56
3.4.2 資料收集 63
3.4.3 資料分析方法 65
第四章 資料分析 68
第一節  敘述性統計分析 68
4.1.1 資料分析 68
4.1.2 基本資料敘述性統計 69
4.1.3 研究變項敘述性統計 72
4.1.4 同質性檢定 77
4.1.5 研究變項的常態性檢定 79
第二節 信度分析 84
第三節 結構方程模式-衡量模式 90
4.3.1 收斂效度分析 90
4.3.2 區別效度分析 93
4.3.3 共線性檢測 95
第四節 結構方程模式-結構模式 96
4.4.1 路徑分析與假說檢定 96
第五章 結論與建議 101
第一節 研究發現與結論 101
第二節 研究貢獻 104
第三節 研究限制與未來研究方向 107
參考文獻 109
附錄一 前測問卷 117
附錄二 正式問卷-PART1 125
附錄三 正式問卷-PART2 131
參考文獻  中文部份
彭台光, 高月慈, & 林鉦棽. (2006). 管理研究中的共同方法變異:問題本質、影響、測試和補救. 管理學報, 23(1), 77-98

 英文部份
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
Benbasat, I., Dexter, A. S., & Todd, P. (1986). An experimental program investigating color-enhanced and graphical information presentation: an integration of the findings. Communicatiom of fhe ACM 29(11), 1094-1105.
Berlyne, D. (1970). Novelty, complexity, and hedonic value. Attention, Perception, & Psychophysics, 8(5), 279-286.
Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214.
Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of Management Review, 13(1), 40.
Chang, H. H. (2008). Intelligent agent's technology characteristics applied to online auctions’ task: A combined model of TTF and TAM. Technovation, 28(9), 564-577.
Chen, J., Duh, R.-R., & Shiue, F. N. (2008). The Effect of Audit Committees on Earnings–Return Association: Evidence from Foreign Registrants in the United States. Corporate Governance: An International Review, 16(1), 32-40.
Chin, W. W. (1998). The partial least squares approach for structural equation modeling. Erlbaum, NJ: Lawrence Erlbum Associates.
Choi, J. H., & Lee, H.-J. (2012). Facets of simplicity for the smartphone interface: A structural model. International Journal of Human-Computer Studies, 70(2), 129-142.
Chu, Y., & Huang, L. (2008). Mobile Technologies Adoption: An Exploratory Case Study. Tsinghua Science and Technology, 13(3), 300-305.
Clarke, I. (2001). Emerging value propositions for m-commerce. Journal of Business Strategies, 18(2), 133.
Coursaris, C. K., Hassanein, K., Head, M. M., & Bontis, N. (2012). The impact of distractions on the usability and intention to use mobile devices for wireless data services. Computers in Human Behavior, 28(4), 1439-1449.
DeLone, W., & McLean, E. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-60.
Deng, L., & Poole, M. S. (2010). Affect in web interfaces: a study of the impacts of web page visual complexity and order. MIS Quarterly, 34(4), 711-730.
Deng, Z., Lu, Y., Wei, K. K., & Zhang, J. (2010). Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China. International Journal of Information Management, 30(4), 289-300.
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information and Management, 36(1), 9-21.
Elgazzar, K., Aboelfotoh, M., Martin, P., & Hassanein, H. S. (2012). Ubiquitous Health Monitoring Using Mobile Web Services. Procedia Computer Science, 10(0), 332-339.
Ferratt, T. W., & Vlahos, G. E. (1998). An investigation of task-technology fit for managers in Greece and the US. European Journal of Information Systems 7(2), 123-136.
Fornell, C. (1992). A National Customer Satisfaction Barometer: The Swedish Experience. Journal of Marketing, 56(1), 6-21.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Gebauer, J., & Shaw, M. J. (2004a). Success Factors and Impacts of Mobile Business Applications: Results from a Mobile e-Procurement Study. International Journal of Electronic Commerce, 8(3), 19-41.
Gebauer, J., & Shaw, M. J. (2004b). Success Factors and Impacts of Mobile Business Applications: Results from a Mobile e-Procurement Study. Int. J. Electron. Commerce, 8(3), 19-41.
Geissler, G. (2001). Web home page complexity and communication effectiveness. Journal of the Association for Information Systems, 2(2), 1.
Gellersen, H. W., Schmidt, A., & Beigl, M. (2002). Multi-sensor context-awareness in mobile devices and smart artifacts. Mobile Networks and Applications, 7(5), 341-351.
Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management Science, 41(12), 1827-1844.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.
GoogleAdsense. (2012). 關於行動網站 http://support.google.com/adsense/bin/answer.py?hl=zh-Hant&answer=2447350.
Haaker, T., Faber, E., & Bouwman, H. (2006). Balancing customer and network value in business models for mobile services. International Journal of Mobile Communications, 4(6), 645-661.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. . (2006). Multivariate data analysis. Upper Saddle River, New Jersey: Prentice Hall.
Hair, J. F., Black W.C., Babin, B., Anderson, R. E., & Tatham, R. L. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Pearson Education.
Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J., & Toivonen, H. (2001). Time Series Segmentation for Context Recognition in Mobile Devices. Paper presented at the Proceedings of the 2001 IEEE International Conference on Data Mining.
Hsin Chang, H. (2010). Task-technology fit and user acceptance of online auction. International Journal of Human-Computer Studies, 68(1–2), 69-89.
IDC. (2009). Number of Mobile Devices Accessing the Internet Expected to Surpass One Billion by 2013, 9 December, http://www.idc.com/getdoc.jsp?containerId=prUS22110509, Last accessed
on 1 August, 2010.
Ingram. (2010). Mary Meeker: Mobile Internet will Soon Overtake Fixed Internet, 12 April, 2010, http://gigaom.com/2010/04/12/mary-meeker-mobile-internet-will-soon-overtake-fixed-internet/, Last accessed on 30 June, 2011.
Jarvenpaa, S. L., Shaw, T. R., & Staples, D. S. (2004). Toward contextualized theories of trust: The role of trust in global virtual teams. Information systems research, 15(3), 250-267.
Jiang, Z., & Benbasat, I. (2007). The effects of presentation formats and task complexity on online consumers' product understanding. MIS Quarterly, 31(3), 475-475.
Jin, X.-L., Cheung, C. M. K., Lee, M. K. O., & Chen, H.-P. (2009). How to keep members using the information in a computer-supported social network. Computers in Human Behavior, 25(5), 1172-1181.
Junglas, I., Abraham, C., & Watson, R. T. (2008). Task-technology fit for mobile locatable information systems. Decision Support Systems, 45(4), 1046-1057.
Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
Kao, Y.-W., Kao, T.-H., Tsai, C.-Y., & Yuan, S.-M. (2009). A personal Web page tailoring toolkit for mobile devices. Computer Standards & Interfaces, 31(2), 437-453.
Keen, P. G. W. (1981). Information systems and organizational change. Communications of the ACM, 24(1), 24-33.
Kim, B. (2012). The diffusion of mobile data services and applications: Exploring the role of habit and its antecedents. Telecommunications Policy, 36(1), 69-81.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2009). Trust and Satisfaction, Two Stepping Stones for Successful E-Commerce Relationships: A Longitudinal Exploration. Information Systems Research, 20(2), 237-257.
Kini, R. B., & Thanarithiporn, S. (2004). Mobile commerce and electronic commerce in Thailand: a value space analysis. Int. J. Mob. Commun., 2(1), 22-37.
Kline, R. B. (2010). Principles and practice of structural equation modeling. New York: The Guilford Press.
Kotha, S., & Rajgopal, S. (2004). The Role of Online Buying Experience as a Competitive Advantage: Evidence from Third‐Party Ratings for E‐Commerce Firms*. The Journal of Business, 77(2), 109-133.
Kuo, Y.-F., Wu, C.-M., & Deng, W.-J. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in Human Behavior, 25(4), 887-896.
Lam, S. Y., Chiang, J., & Parasuraman, A. (2008). The effects of the dimensions of technology readiness on technology acceptance: An empirical analysis. Journal of Interactive Marketing, 22(4), 19-39.
Lavie, T., & Tractinsky, N. (2004). Assessing dimensions of perceived visual aesthetics of web sites. International Journal of Human-Computer Studies, 60(3), 269-298.
Lee, C.-C., Cheng, H. K., & Cheng, H.-H. (2007). An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decision Support Systems, 43(1), 95-110.
Lee, J., Bharosa, N., Yang, J., Janssen, M., & Rao, H. R. (2011). Group value and intention to use - A study of multi-agency disaster management information systems for public safety. Decision Support Systems, 50(2), 404-414.
Lee, K. C., & Chung, N. (2009). Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective. Interacting with Computers, 21(5–6), 385-392.
Leuthold, S., Schmutz, P., Bargas-Avila, J. A., Tuch, A. N., & Opwis, K. (2011). Vertical versus dynamic menus on the world wide web: Eye tracking study measuring the influence of menu design and task complexity on user performance and subjective preference. Computers in Human Behavior, 27(1), 459-472.
Lewis, B. R., & Soureli, M. (2006). The antecedents of consumer loyalty in retail banking. Journal of Consumer Behaviour, 5(1), 15-31.
Li, D., Browne, G. J., & Wetherbe, J. C. (2006). Why do internet users stick with a specific web site? A relationship perspective. International Journal of Electronic Commerce, 10(4), 105-141.
Lin, T.-C., & Huang, C.-C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information and Management 45(6), 410-417.
Lin, W.-S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human-Computer Studies, 70(7), 498-507.
Liu, Y., Lee, Y., & Chen, A. N. K. (2011). Evaluating the effects of task–individual–technology fit in multi-DSS models context: A two-phase view. Decision Support Systems, 51(3), 688-700.
Mahatanankoon, P., Wen, H. J., & Lim, B. (2005). Consumer-based m-commerce: exploring consumer perception of mobile applications. Computer Standards & Interfaces, 27(4), 347-357.
Marcoulides, G. A., Chin, W. W., & Saunders, C. (2009). A CRITICAL LOOK AT PARTIAL LEAST SQUARES MODELING. MIS Quarterly, 33(1), 171-175.
Matthing, J. (2006). Developing successful technology-based services: the issue of identifying and involving innovative users. Journal of Service Management, 20(5), 288.
Moshagen, M., & Thielsch, M. T. (2010). Facets of visual aesthetics. International Journal of Human-Computer Studies, 68(10), 689-709.
Närman, P., Holm, H., Höök, D., Honeth, N., & Johnson, P. (2012). Using enterprise architecture and technology adoption models to predict application usage. Journal of Systems and Software, 85(8), 1953-1967.
Nadkarni, S., & Gupta, R. (2007). A task-based model of perceived website complexity. MIS Quarterly, 31(3), 501-524.
Neuman, W. L. (2000). Social Research Methods: Quantitative and Qualitative Methods. Boston, MA: Allyn & Bacon.
Ngo, D. C. L., Teo, L. S., & Byrne, J. G. (2003). Modelling interface aesthetics. Information Sciences, 152(1), 25-46.
Okazaki, S., & Taylor, C. R. (2008). What is SMS advertising and why do multinationals adopt it? Answers from an empirical study in European markets. Journal of Business Research, 61(1), 4-12.
Pagani, M. (2006). Determinants of adoption of High Speed Data Services in the business market: Evidence for a combined technology acceptance model with task technology fit model. Information & Management, 43(7), 847-860.
Parasuraman, A. (2000). Technology Readiness Index (Tri): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research, 2(4), 307-320.
Parkes, A. (2012). The effect of task–individual–technology fit on user attitude and performance: An experimental investigation. Decision Support Systems, 53(4).
Pearson, S. W., & Bailey, J. E. (1980). Measurement of computer user satisfaction. Performance Evaluation Review, 9(1), 59-68.
Prykop, C., & Heitmann, M. (2006). Designing Mobile Brand Communities: Concept and Empirical Illustration. Journal of Organizational Computing and Electronic Commerce, 16(3-4), 301-323.
Qu, Z., & Sun, J. (2012). Adaptive mobile web interface: user readiness in context. International Journal of Mobile Communications, 10(2), 132-149.
Qureshi, I., & Compeau, D. (2009). Assessing between-group differences in information systems research: A comparison of covariance-and component-based SEM. MIS quarterly, 33(1), 197.
Report, N. N. G. (2009). Usability of Mobile Websites: 85 Design Guidelines for Improving Access to Web-Based Content and Services through Mobile Devices, http://www.nngroup.com/reports/mobile/, Last accessed on 14 October, 2010.
Research, D. (2000). Mobile Commerce Report, Durlacher Ltd., London (Available from http://www.Durlacher.com/).
Sarker, S., & Valacich, J. S. (2010). An alternative to methodological individualism: a non-reductionist approach to studying technology adoption by groups. MIS Quarterly, 34(4), 779-808.
Siau, K. (2001). Mobile commerce: Promises, challenges and research agenda. Journal of Database Management, 12(3), 4.
Son, M., & Han, K. (2011). Beyond the technology adoption: Technology readiness effects on post-adoption behavior. Journal of Business Research, 64(11), 1178-1182.
Steinmann, D. O. (1976). The effects of cognitive feedback and task complexity in multiple-cue probability learning. Organizational Behavior and Human Performance, 15(2), 168-179.
Stevenson, J. S. (2000). Webpage background and viewer attitudes. Journal of Advertising Research, 40(1/2), 29.
Suh, K. S. (1999). Impact of communication medium on task performance and satisfaction: an examination of media-richness theory. Information & Management, 35(5), 295-312.
Talukder, A. K., & Das, D. (2010). Mobile web for under-privileged in developing countries. Telematics and Informatics, 27(3), 350-359.
Tsalgatidou, A., & Pitoura, E. (2001). Business models and transactions in mobile electronic commerce: requirements and properties. Computer Networks, 37(2), 221-236.
Turban, E., King, D., Lee, J., Liang, T.-P., & Turban, D. (2012). Electronic Commerce 2012.
Uden, L., & Helo, P. (2008). Designing mobile interfaces using activity theory. International Journal of Mobile Communications, 6(5), 616-632.
Venkatesh, V., Ramesh, V., & Massey, A. P. (2003). Understanding usability in mobile commerce. Communications of the ACM, 46(12), 53-56.
Vessey, I. (1991). Cognitive fit: An empirical study of information acquisition. Information Systems Research, 2(1), 63.
Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees' technology readiness on technology acceptance. Information & Management 44(2), 206-215.
Wang, W.-T., & Li, H.-M. (2012). Factors influencing mobile services adoption: a brand-equity perspective. Internet Research, 22(2), 142.
Wang, Y.-S. (2008). Assessing e-commerce systems success: a respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557.
Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37(1), 60-82.
Yesilada, Y., Brajnik, G., & Harper, S. (2011). Barriers common to mobile and disabled web users. Interacting with Computers, 23(5), 525-542.
Yuan, Y., Archer, N., Connelly, C. E., & Zheng, W. (2010). Identifying the ideal fit between mobile work and mobile work support. Information & Management, 47(3), 125-137.
Yuan, Y., & Zhang, J. J. (2003). Towards an appropriate business model for m- commerce. International Journal of Mobile Communications, 1(1-2), 35-56.
Zeithaml, V. A. (2002). Service quality delivery through web sites: a critical review of extant knowledge. Academy of Marketing Science. Journal, 30(4), 362.
Zheng, Y., Zhao, K., & Stylianou, A. (2012). The Impacts of Information Quality and System Quality on Users’ Continuance Intention in Information-Exchange Virtual Communities: An Empirical Investigation. Decision Support Systems.
Zhou, T. (2012). An empirical examination of continuance intention of mobile payment services. Decision Support Systems.
Zhou, T. (2013). An Empirical Examination of Continuance Intention of Mobile Payment Services. Decision Support Systems, 54(2), 1085–1091.
Zhou, T., & Lu, Y. (2011). Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Computers in Human Behavior, 27(2), 883-889.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-01起公開。

  • 如您有疑問,請聯絡圖書館