進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1806201323372300
論文名稱(中文) 以社會傳染理論與電子商務成功模式探討使用者對Apps之持續使用意圖─以通訊Apps 為例
論文名稱(英文) Examining the Continued Usage Intention of the Users of Mobile Instant Messaging Apps: Based on the Social Contagion Theory and the E-Commerce Systems Success Model
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 101
學期 2
出版年 102
研究生(中文) 林于迪
研究生(英文) Yu-Di Lin
學號 r76001037
學位類別 碩士
語文別 中文
論文頁數 141頁
口試委員 指導教授-王維聰
口試委員-戴偉峻
口試委員-劉任修
中文關鍵字 社會傳染理論  電子商務成功模型  知覺價值  持續使用意圖 
英文關鍵字 Social Contagion Theory  E-commerce systems success model  perceived value  continued usage intention 
學科別分類
中文摘要 隨著智慧型手機的快速成長、無線網路的成熟,智慧型手機已漸漸成為民眾每日接觸的重要行動裝置,其衍生出的行動應用程式也正快速地進入日常生活中且被廣泛應用,面對這樣的機會,行動服務提供商發布了各式各樣的Apps讓消費者下載,使得消費者對Apps並沒有真正形成使用者的依賴性而使得轉換成本很低,因此如何將使用者保留住,讓使用者願意持續的使用該Apps,是一個重要的議題。
社會傳染效果的影響會改變個人對事物的看法,與過去研究不同在於本研究嘗試以社會網絡的觀點來探討Apps的持續使用意圖。傳染效果有關的兩種網絡結構概念為「凝聚力」與「結構等價」,凝聚力是透過直接的互動來擴散,結構等價則是透過相似的網絡位置來擴散,也就是說個體在採用Apps時會受到平時與自己較常往來互動的親友們的影響或參考比較與自己在社會網絡位置類似的親友們使用哪些應用程式,進而影響使用者對Apps 的持續使用意圖。因此,本研究將以通訊Apps為例子來進行實證研究並嘗試採用社會傳染理論並結合Wang(2008)電子商務成功模型來探討Apps的滿意度及持續使用意圖,以建構出適合Apps特性的模型。
本研究採取網路問卷為調查方式,以通訊Apps的使用者為調查對象,共收集471份有效問卷,並以結構方程模式分析調查結果。研究結果顯示,模型的測量模式具有良好的信效度,資訊品質、系統品質與服務品質對於提高使用者知覺價值與滿意程度亦有顯著影響。而社會傳染理論的部分,雖然Apps使用者之間的「結構等價」對於Apps的滿意度沒有顯著的影響,但對於Apps的知覺價值有顯著的正向影響,另一方面Apps使用者之間的凝聚力對使用者滿意度與使用者的知覺價值與使用者滿意度的程度也具有正向顯著影響。本研究結果彌補過去文獻之不足,並提供Apps業者在留住使用者方面相關實務之依據。
英文摘要 With the rapid growth of smart phones and the progress of wireless networks, smart phones have gradually become one of the most indispensable mobile devices for practical everyday use. Derived mobile applications are growing rampantly and are experiencing heavy use. Seeing a viable business opportunity, mobile service providers have published a wide variety of Apps for consumers to download. However, Consumers Apps don’t really contribute to lowering switching costs by creating user-dependent behavior. Therefore, determining a method by which to capture consumers and makethem willing to use the same App over and over again has become an important issue.
The impact of social contagion on people is that individuals will change their view of things as a result. The difference between this study and previous ones on this topic is that this study attempts to explore App continuance intention through the concept of social networks. The social network concept of contagion effects includescohesion and structural equivalence. Cohesion is diffused through direct interaction, whereas structural equivalence is diffused by network position similarity. Therefore, people’s use of Apps will be influenced by people they have close interaction with as well as by those who compare similar social network positions with them. Therefore, using mobile instant messagingapps as examples for empirical research, this study applied Social Contagion Theory and Wang’s (2008) e-commerce success model to explore App satisfaction and continuance intention and toconstruct an appropriate mode for Apps.
By applying a structural equation modeling technique to investigate the proposed model in this study, the hypotheses were empirically validated based on internet survey data of 471 mobile instant messaging Apps users. The results indicated that the measurement mode of the model hadgood reliability and validity, information quality, system quality and service quality and that it also hada positive influence with regard toimproving users’ perceived value and satisfaction. Furthermore, although “structural equivalence” among Apps users was not found to have a positive influence on App satisfaction, it was found to positively influence perceived value. “Cohesion” among Apps users was shown to have apositive influence on user’s satisfaction and perceived value. This study not only is an important reference for future studies, but it also provides insightful managerial implications for Apps service providers.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 IX
第一章緒論 1
第一節研究背景與動機 1
第二節研究目的 3
第三節研究範圍與限制 4
第四節研究流程 4
第二章文獻探討 7
第一節行動應用程式 7
2.1.1行動應用程式 7
2.1.2即時通訊軟體 8
2.1.3行動即時通訊應用程式 10
2.1.4行動應用程式發展狀況與相關研究 11
第二節社會傳染理論 14
2.2.1社會傳染理論 14
2.2.2凝聚力(Cohesion) 16
2.2.3結構等價(Structural Equivalence) 19
2.2.4凝聚力與結構等價的關係 22
2.2.5社會傳染理論的應用 24
第三節資訊系統成功模式 26
2.3.1資訊系統成功模型 26
2.3.2修正的資訊系統成功模型 27
2.3.3資訊系統成功模型在Apps的應用 30
2.3.4電子商務成功模型 31
第三章研究方法 38
第一節研究架構 38
第二節研究假說 39
3.2.1資訊品質、系統品質與服務品質 39
3.2.2凝聚力、結構等價 42
3.2.3知覺價值 45
3.2.4使用者滿意度 47
第三節問卷設計 50
第四節資料分析 62
3.4.1前測 62
3.4.2資料收集 71
第五節資料分析方法 72
第四章資料分析 75
第一節敘述性統計分析 75
4.1.1基本資料敘述性統計分析 76
4.1.2研究變項敘述統計分析 78
4.1.3研究構面的同質性檢定 85
第二節信度分析 86
第三節相關分析 92
第四節衡量模式 93
4.4.1收斂效度分析 93
4.4.2區別效度分析 99
第五節結構方程模式-結構模式 101
4.5.1共線性檢測 101
4.5.2路徑分析與假說檢定 101
第五章結論與建議 107
第一節研究發現與結論 107
第二節研究貢獻 110
第三節研究限制與未來研究方向 112
參考文獻 114
中文部分 114
英文部分 114
附錄一:前測問卷 124
附錄二:正式問卷(Part1) 132
附件三:正式問卷(Part2) 138
參考文獻 中文部分
邱皓政. (2003). 結構方程模式:LISREL的理論技術與應用. 台北市: 雙葉.
彭台光, 高月慈, &林鉦棽. (2006). 管理研究中的共同方法變異: 問題本質, 影響, 測試和補救. 管理學報, 23(1), 77-98.
資策會創新應用服務研究所(2012)-2012台灣民眾應用軟體使用行為調查
Retrieved 2012/9/12, from
http://www.find.org.tw/find/home.aspx?id=332&page=many
資策會FIND/經濟部技術處(2012)-科技化服務價值鏈研究與推動計畫
Retrieved 2012/7/26, from
http://www.find.org.tw/find/home.aspx?page=many&id=331
蕭文龍. (2009). 多變量分析最加入門實用書—SPSS+LISREAL(SEM). 台北市: 碁峰資訊.

英文部分
Abrahamson, E., & Rosenkopf, L. (1997). Social Network Effects on the Extent of Innovation Diffusion: A Computer Simulation. Organization Science, 8(3), 289-309.
Anabel, Q.-H. (2008). Instant Messaging on Campus: Use and Integration in University Students' Everyday Communication. The Information Society, 24(2), 105-115.
Anderson, E. W., Fornell, C., & Lehmann, D. R. (1994). Customer Satisfaction, Market Share, and Profitability: Findings From Sweden. Journal of Marketing, 58(3), 53.
Anderson, E. W., & Sullivan, M. W. (1993). The Antecedents And Consequences Of Customer Satisfaction For Firms. Marketing Science, 12(2), 125-143.
Anderson, R. E., & Srinivasan, S. S. (2003). E-satisfaction and e-loyalty: A contingency framework. Psychology & Marketing, 20(2), 123–138.
Bagozzi, R. P. (1992). The self-regulation of attitude, intentions, and behavior. Social Psychology Quarterly, 55(2), 178–204.
Bagozzi, R. R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
Barnes, S. J. (2002). The mobile commerce value chain: analysis and future developments. International Journal of Information Management, 22(2), 91-108.
Bell, D. R., & Song, S. (2007). Neighborhood effects and trial on the internet: Evidence from online grocery retailing. Quantitative Marketing and Economics, 5(4), 361-400.
Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214.
Birnholtz, J. (2010). Adopt, adapt, abandon: Understanding why some young adults start, and then stop, using instant messaging. Computers in Human Behavior, 26(6), 1427-1433.
Bolton, R. N., & Drew, J. H. (1991). A multistage model of customers' assessments of service quality and value. Journal of Consumer Research, 17(4), 375-384.
Burt, R. S. (1987). Social contagion and innovation: Cohesion versus structural equivalence. American Journal of Sociology, 92(6), 1287-1335.
Burt, R. S. (Ed.). (2010). The shadow of other people: socialization and social comparison in marketing: Taylor and Francis.
Cameron, A. F., & Webster, J. (2005). Unintended consequences of emerging communication technologies: Instant Messaging in the workplace. Computers in Human Behavior, 21(1), 85-103.
Cardozo, R. N. (1965). An Experimental Study of Customer Effort, Expectation, and Satisfaction. Journal of Marketing Research, 2(3), 244-249.
Carolina, L. p.-N., Francisco, J. M.-C., & Harry, B. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359-364.
Carpenter, J. M., & Fairhurst, A. (2005). Consumer shopping value, satisfaction, and loyalty for retail apparel brands. Journal of Fashion Marketing and Management, 9(3), 256 - 269.
Caruana, A., & Fenech, N. (2005). The Effect of Perceived Value and Overall Satisfaction on Loyalty: A Study among Dental Patients. Journal of Medical Marketing, 5(3), 245-255.
Chen, C.-W. (2010). Impact of quality antecedents on taxpayer satisfaction with online tax-filing systems—An empirical study. Information & Management, 47(5-6), 308-315.
Chin, W. W. (1998). The partial least squares approach for structural equation modeling. Erlbaum, NJ: Lawrence Erlbum Associates.
Cronin Jr, J. J., Brady, M. K., & Hult, G. T. M. (2000). Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intentions in service environments. Journal of Retailing, 76(2), 193-218.
Daniel, E. M., & Grimshaw, D. J. (2002). An exploratory comparison of electronic commerce adoption in large and small enterprises. Journal of Information Technology, 17(3), 133-147.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-95.
DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of management information systems, 19(4), 9-30.
DeLone, W. H., & McLean, E. R. (2004). Measuring e-commerce success: applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31-47.
Deng, Z., Lu, Y., Wei, K. K., & Zhang, J. (2010). Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China. International Journal of Information Management, 30(4), 289-300.
Diefenbach, M. A., Weinstein, N. D., & O'Reilly, J. (1993). Scales for assessing perceptions of health hazard susceptibility. Health Education Research, 8(2), 307-319.
Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of Price, Brand, and Store Information on Buyers' Product Evaluations. Journal of Marketing Research, 28(3), 307-319.
Durvasula, S., Lysonski, S., Mehta, S. C., & Buck Peng, T. (2004). Forging relationships with services: The antecedents that have an impact on behavioural outcomes in the life insurance industry. Journal of Financial Services Marketing, 8(4), 314-326.
Eggert, A., & Ulaga, W. (2002). Emerald Article: Customer perceived value: a substitute for satisfaction in business markets? Journal of Business & Industrial Marketing, 17(2), 107-118.
Faust, K. (1988). Comparison of methods for positional analysis: Structural and general equivalences. Social Networks, 10(4), 313-341.
Faust, K., Kimball Romney, A. (1985). Does structure find structure?: A critique of Burt's use of distance as a measure of structural equivalence. Social Networks, 7(1), 77-103.
Festinger, L. (1954). A Theory of Social Comparison Processes. Human Relations, 7(2), 117-140.
Fornell, C. (1992). A National Customer Satisfaction Barometer: The Swedish Experience. Journal of Marketing, 56(1), 6-21.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Fujimoto, K., & Valente, T. W. (2012). Social network influences on adolescent substance use: disentangling structural equivalence from cohesion. Social Science & Medicine, 74(12), 1952-1960.
Galaskiewicz, J., & Burt, R. S. (1991). Interorganization Contagion in Corporate Philanthropy. Administrative Science Quarterly, 36(1), 88-105.
Godes, D., & Mayzlin, D. (2009). Firm-Created Word-of-Mouth Communication: Evidence from a Field Test. Marketing Science, 28(4), 721-739.
Goethals, G. R., & Darley, J. M. (1987). Social comparison theoy: Self-evaluation and group life. In B. Mullen & G.R.Goethals (Eds.) (pp. 21-48). New York.
Goldenberg, J., Han, S., Lehmann, D. R., & Hong, J. W. (2009). The Role of Hubs in the Adoption Processes. Journal of Marketing, 73(2).
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.
Grewal, D., Monroe, K. B., & Krishnan, R. (1998). The Effects of Price-Comparison Advertising on Buyers' Perceptions of Acquisition Value, Transaction Value, and Behavioral Intentions. Journal of Marketing, 62(2), 46-59.
Grinter, R. E., & Palen, L. (2002). Instant messaging in teen life. Paper presented at the Proceedings of the 2002 ACM conference on Computer supported cooperative work.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Pearson Education.
Hamilton, S., & Chervany, N. L. (1981). Evaluating Information System Effectiveness -- Part I: Comparing Evaluation Approaches. MIS Quarterly, 5(3), 55-69.
Harkola, J., & Greve, A. (1995). Diffusion of technology:cohesion or structural equivalence? Paper presented at the 55th Annual Meeting of the Academy of Management, Vancouver, Vancouver, BC, Canada.
Hassanein, K., & Head, M. (2007). Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. International Journal of Human-Computer Studies, 65(8), 689-708.
Hellier, P. K., Geursen, G. M., Carr, R. A., & Rickard, J. A. (2003). Customer repurchase intention: A general structural equation model. European Journal of Marketing, 37(11), 1762 - 1800.
Hinz, O., Schulze, C., & Takac, C. (in press). New product adoption in social networks: Why direction matters. Journal of Business Research.
Huang, H.-C., Shih, H.-Y., & Wu, Y.-C. (2011). Contagion effects of national innovative capacity: Comparing structural equivalence and cohesion models. Technological Forecasting and Social Change, 78(2), 244-255.
Iyengar, R., Van den Bulte, C., & Valente, T. W. (2011). Opinion Leadership and Social Contagion in New Product Diffusion. Marketing Science, 30(2), 195-212.
Kang, Y. S., & Lee, H. (2010). Understanding the role of an IT artifact in online service continuance: An extended perspective of user satisfaction. Computers in Human Behavior, 26(3), 353-364.
Kannan, V., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
Kettinger, W. J., & Choong C. Lee, W. J. (1994). Perceived Service Quality and User Satisfaction with the Information Services Function. Decision Sciences, 25(5/6), 737-766.
Kim, B. (2010). An empirical investigation of mobile data service continuance: Incorporating the theory of planned behavior into the expectation–confirmation model. Expert Systems with Applications, 37(10), 7033-7039.
Kim, B. (2012). The diffusion of mobile data services and applications: Exploring the role of habit and its antecedents. Telecommunications Policy, 36(1), 69-81.
Kim, B., & Han, I. (2009). The role of trust belief and its antecedents in a community-driven knowledge environment. Journal of the American Society for Information Science & Technology, 60(5), 1012-1026.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2009). Trust and Satisfaction, Two Stepping Stones for Successful E-Commerce Relationships: A Longitudinal Exploration. Information Systems Research, 20(2), 237-257.
Kline, R. B. (2010). Principles and Practice of Structural Equation Modeling. New York: The Guilford Press.
Kuo, Y.-F., Wu, C.-M., & Deng, W.-J. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in Human Behavior, 25(4), 887-896.
Lam, S. Y., Shanka, V., Erramilli, M. K., & Murthy, B. (2004). Customer Value, Satisfaction, Loyalty, and Switching Costs: An Illustration From a Business-to-Business. Journal of the Academy of Marketing Science, 32(3), 293-311.
Langley, D. J., Bijmolt, T. H. A., Ortt, J. R., & Pals, N. (2012). Determinants of Social Contagion during New Product Adoption. Journal of Product Innovation Management, 29(4), 623-638.
Lee, K. C., & Chung, N. (2009). Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective. Interacting with Computers, 21(5–6), 385-392.
Leenders, R. T. A. J. (2002). Modeling social influence through network autocorrelation: constructing the weight matrix. Social Networks, 24(1), 21-47.
Lewis, B. R., & Soureli, M. (2006). The antecedents of consumer loyalty in retail banking. Journal of Consumer Behaviour, 5(1), 15–31.
Lewis, W., Agarwal, R., & Sambamurthy, V. (2003). Sources of Influence on Beliefs about Information Technology Use: An Empirical Study of Knowledge Workers. MIS Quarterly, 27(4), 657-678.
Li, D., Chau, P. Y. K., & Lou, H. (2005). Understanding individual adoption of instant messaging: An empirical investigation. Journal of the Association for Information Systems, 6(4), 102-129.
Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How Habit Limits The Predictive Power Of Intention: The Case Of Information Systems Continuance. MIS Quarterly, 31(4), 705-737.
Lin, C.-P. (2011). Assessing the mediating role of online social capital between social support and instant messaging usage. Electronic Commerce Research and Applications, 10(1), 105-114.
Lin, H.-H., & Wang, Y.-S. (2006). An examination of the determinants of customer loyalty in mobile commerce contexts. Information & Management, 43(3), 271-282.
Liu, C.-T., Guo, Y. M., & Lee, C.-H. (2011). The effects of relationship quality and switching barriers on customer loyalty. International Journal of Information Management, 31(1), 71-79.
Lorrain, F., & White, H. C. (1971). Structural equivalence of individuals in social networks. The Journal of Mathematical Sociology, 1(1), 49-80.
Lu, Y., Zhou, T., & Wang, B. (2009). Exploring Chinese users’ acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory. Computers in Human Behavior, 25(1), 29-39.
Manchanda, P., Xie, Y., & Youn, N. (2008). The Role of Targeted Communication and Contagion in Product Adoption. Marketing Science, 27(6), 961-976.
Marcoulides, G. A., Chin, W. W., & Saunders, C. (2009). A Critical Look At Partial Least Squares Modeling. MIS Quarterly, 33(1), 171-175.
Mason, R. O. (1978). Measuring information output: A communication systems approach. Information & Management, 1(4), 219-234.
McClea, M., Yen, D. C., & Huang, A. (2004). An analytical study towards the development of a standardized IM application. Computer Standards & Interfaces, 26(4), 343-355.
Michal, D.-C., & Barak, A. (2013). Adolescents’ use of Instant Messaging as a means of emotional relief. Computers in Human Behavior, 29(1), 58-63.
Mizruchi, M. S. (1993). Cohesion, equivalence, and similarity of behavior: a theoretical and empirical assessment. Social Networks, 15(3), 275-307.
Neuman, W. L. (2000). Social research methods: qualitative and quantitative approaches. Boston,MA: Allyn and Bacon.
Parasuraman, A., & Grewal, D. (2000). The impact of technology on the quality-value-loyalty chain: a research agenda. . Journal of the Academy of Marketing Science, 28(1), 168-174.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing, 64(1), 12-40.
Patterson, P. G., & Spreng, R. A. (1997). Modelling the relationship between perceived value,satisfaction and repurchase intentions in a business-business, services context: an empirical examination. . International Journal of Service Industry Management, 8(5), 414-434.
Petter, S., Straub, D., & Rai, A. (2007). Specifying Formative Constructs in Information Systems Research. MIS Quarterly, 31(4), 623-656.
Pitt, L. F., Parent, M., Junglas, I., Chan, A., & Spyropoulou, S. (2011). Integrating the smartphone into a sound environmental information systems strategy: Principles, practices and a research agenda. The Journal of Strategic Information Systems, 20(1), 27-37.
Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service Quality: A Measure of Information Systems Effectiveness. MIS Quarterly, 19(2), 173-187.
Porter, C. E., & Donthu, N. (2008). Cultivating trust and harvesting value in virtual communities. Management Science, 54(1), 113-128.
Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the Validity of IS Success Models: An Empirical Test and Theoretical Analysis. Information Systems Research, 13(1), 50-69.
Reichheld, F. F., & Schefter, P. (2000). E-loyalty: Your secret weapon on the web sites. . Harvard Business Review, 78(4), 105-113.
Rice, R. E., & Aydin, C. (1991). Attitudes Toward New Organizational Technology: Network Proximity as a Mechanism for Social Information Processing. Administrative Science Quarterly, 36(2), 219-244.
Seddon, P. B. (1997). A Respecification and Extension of the DeLone and McLean Model of IS Success. Information Systems Research, 8(3), 240.
Seddon, P. B., & Kiew, M.-Y. (1996). A partial test and development of DeLone and McLean's model of IS success. The Australian Journal of Information Systems, 4(1), 90-109.
Shang, R.-A., Chen, Y.-C., & Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & Management, 42(3), 401-413.
Shih, H.-Y. (2008). Contagion effects of electronic commerce diffusion: Perspective from network analysis of industrial structure. Technological Forecasting and Social Change, 75(1), 78-90.
Shih, H.-Y. (2012). The dynamics of local and interactive effects on innovation adoption: The case of electronic commerce. Journal of Engineering and Technology Management, 29(3), 434-452.
Shin, D.-H., & Kim, W.-Y. (2008). Forecasting customer switching intention in mobile service: An exploratory study of predictive factors in mobile number portability. Technological Forecasting and Social Change, 75(6), 854-874.
Spencer, J. W. (2003). Firms' Knowledge-sharing Strategies In The Global Innovation System: Empirical Evidence From The Flat Panel Display Industry. Strategic Management Journal, 24(3), 217.
Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of customer satisfaction. Journal of Marketing, 60(3), 15-32.
Swanson, E. B. (1974). Management Information Systems: Appreciation And Involvement. Management Science, 21(2), 178-188.
Tam, J. L. M. (2004). Customer Satisfaction, Service Quality and Perceived Value: An Integrative Model. Journal of Marketing Management, 20(7-8), 897-917.
Tanaka, J. S. (1987). " How Big Is Big Enough?": Sample Size and Goodness of Fit in Structural Equation Models with Latent Variables. Child Development, 58(1), 134-146.
Tayie, S. (2005). Reasearch Methods and Writing Reasearch Proposals. Cario: Center for Advancement of Postgraduate Studies and Research in Engineering Sciences, Faculty of Engineering-Cairo University (CAPSCU).
Taylor, D. G., Voelker, T. A., & Pentina, I. (2011). Mobile application adoption by young adults : a social network perspective. international Journal of Mobile Marketing, 6(2), 60-70.
Thong, J. Y. L., Hong, S.-J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
Turel, O., & Serenko, A. (2006). Satisfaction with mobile services in Canada: An empirical investigation. Telecommunications Policy, 30(5-6), 314-331.
Voss, G. B., Parasuraman, A., & Grewal, D. (1988). The roles of price, performance, and expectations in determining satisfaction in service exchanges. Journal of Marketing, 62(4), 46-61.
Wallace, D. W., Giese, J. L., & Johnson, J. L. (2004). Customer retailer loyalty in the context of multiple channel strategies. Journal of Retailing, 80(4), 249-263.
Wang, H.-Y., & Wang, S.-H. (2010). Predicting mobile hotel reservation adoption: Insight from a perceived value standpoint. International Journal of Hospitality Management, 29(4), 598-608.
Wang, Y.-S., & Tang, T.-I. (2003). Assessing Customer Perceptions of Website Service Quality in Digital Marketing Environments. Journal of End User Computing, 15(3), 14-31.
Wang, Y.-S., Tang, T.-I., & Tang, J.-t. E. (2001 ). An instrument for measuring customer satisfaction toward Web sites that market digital products and services. Journal of Electronic Commerce Research, 2(3), 89–102.
Wang, Y. S. (2008). Assessing e commerce systems success: a respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557.
Yan, X. (2003). Mobile data communications in China. Commun. ACM, 46(12), 80-85.
Yang, Z., & Peterson, R. T. (2004). Customer perceived value, satisfaction, and loyalty: The role of switching costs. Psychology & Marketing, 21(10), 799–822.
Yi, C.-C., Liao, P.-W., Huang, C.-F., & Hwang, I.-H. (2009). Acceptance of Mobile Learning: a Respecification and Validation of Information System Success. . Paper presented at the World Academy of Science, Japan, Tokyo.
Young Eun, L., & Izak, B. (2004). A Framework for the Study of Customer Interface Design for Mobile Commerce. International Journal of Electronic Commerce, 8(3), 79-102.
Zaman, M., Anandarajan, M., & Dai, Q. (2010). Experiencing flow with instant messaging and its facilitating role on creative behaviors. Computers in Human Behavior, 26(5), 1009-1018.
Zeithaml, V. A. (1988). Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52(3), 2-22.
Zheng, Y., Zhao, K., & Stylianou, A. (in press). The Impacts of Information Quality and System Quality on Users’ Continuance Intention in Information-Exchange Virtual Communities: An Empirical Investigation. Decision Support Systems.
Zhou, T. (2013). An Empirical Examination of Continuance Intention of Mobile Payment Services. Decision Support Systems, 54(2), 1085–1091.
Zhou, T., & Lu, Y. (2011). Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Computers in Human Behavior, 27(2), 883-889.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw