進階搜尋


下載電子全文  
系統識別號 U0026-1806201320344300
論文名稱(中文) 注儲二氧化碳之飽和度前鋒在鹽水層移棲行為研究
論文名稱(英文) CO2 Plume Migration During and After Geological Sequestration in Saline Aquifer
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 邱琪惠
研究生(英文) Chi-Hui Chiu
學號 N46004010
學位類別 碩士
語文別 中文
論文頁數 187頁
口試委員 指導教授-林再興
共同指導教授-謝秉志
口試委員-林立夫
口試委員-陳大麟
口試委員-胡興台
口試委員-呂明達
口試委員-吳健一
口試委員-楊耿明
中文關鍵字 二氧化碳封存  飽和度前鋒  分相流  前鋒推進理論  前鋒推進經驗式 
英文關鍵字 Carbon dioxide sequestration  Saturation front  Fractional flow  Frontal advance theory  Empirical propagation equations 
學科別分類
中文摘要 二氧化碳地質封存是目前國際間認為最可行的二氧化碳減量方法,其中,深部鹽水層被認為具有最大之封存潛能。本研究利用解析法與數值法,研究多孔介質中兩相流體(二氧化碳與水)流動時,飽和度前鋒(兩相流體界面)在不同地層模型之傳輸行為(包含傳輸速度及範圍),進而推導出前鋒推進距離與時間之解析式或經驗式。並且探討不同操作條件(例如,變動注入率以及二氧化碳停注)對於飽和度前鋒移棲行為之影響,歸納其二氧化碳前鋒推進經驗式。所推求之解析式或經驗式可用做未來注儲試驗時監測及預測二氧化碳前鋒移動之用。
本研究使用數值模擬法分別建立一維水平線性、一維圓柱、二維水平及傾斜、三維水平及傾斜數值模式,根據分相流方程式繪製二氧化碳分相流隨飽和度變化圖,得到不同二氧化碳飽和度前鋒(包含劇變前鋒(shock front)),再使用數值模擬計算不同時間下二氧化碳氣體飽和度隨距離分布圖,找出各時間所對應的前鋒飽和度移動距離,可進一步計算前鋒的移動速度。
本研究所得之結果為:(1)歸納出不同幾何形狀地層(包含一維線性及圓柱、二維水平及傾斜、三維水平及傾斜模式)二氧化碳注儲於鹽水層之飽和度前鋒推進經驗式。二氧化碳前鋒在線性模式中,飽和度前鋒移動距離(x)與時間(t)呈現線性關係;在圓柱及二維模式下的推進距離平方(r2)與時間(t)呈現線性關係,斜率值即為前鋒移動速度;(2)二氧化碳飽和度前鋒的移棲速度會隨選取的前鋒準則不同(例如,二氧化碳飽和度為0.138、0.173、0.208及0.243),而有所差異。當前鋒的二氧化碳飽和度愈大,其前鋒移動愈慢;若前鋒的二氧化碳飽和度愈小,則速度相對較快,如果前鋒的二氧化碳飽和度小於劇變前鋒飽和度時,其移棲速度會近似於劇變前鋒的移動速度;(3)在圓柱模式中,當二氧化碳以定注入率注儲時,其團塊移棲速度與注入率大小成線性正比關係;當二氧化碳以變注入率注儲時,在總注入率相同的情況下,可以概略使用算術平均的單一注入率來進行總注儲期間的移棲速度估算;(4)在二維水平及傾斜模式中,於二氧化碳注儲之後的關井期間,團塊仍會繼續在地層中移動。在傾斜地層中,向上傾角方向的移動現象最為明顯;而下傾角的團塊則消散愈明顯,甚至有後退之趨勢,其原因是受到團塊受到浮力機制而傾向往地層高處移棲所造成之結果;(5)在二維傾斜模式中,不論注氣或關井期間,在脊線方向的前鋒移棲速度幾乎不受傾角大小的影響;而地層傾角愈大,團塊往上傾角方向的移棲速度愈快,往下傾角方向的前鋒移棲速度則愈慢;(6)在三維地層中(考慮垂直方向流動),二氧化碳團塊在上部地層會隨時間而向外擴張,但在下部地層的二氧化碳團塊則因浮力影響,會持續往上方地層移棲,造成二氧化碳在側向的移動範圍隨時間而縮小;(7)在三維地層全貫穿井與部分貫穿井(穿孔於底層)案例中,頂部的二氧化碳前鋒移動幾乎不受穿孔區間的影響;部分貫穿井的中層與底層之二氧化碳團塊向側向的移動範圍較全貫穿井分布來得遠,其中又以底層具有最大差異性;(8)二氧化碳團塊在三維傾斜地層中,大致在上傾角方向的移棲速度最快,其次為脊線方向,而下傾角方向的移動速度則最慢。而中層的飽和度在不同方向分布較為複雜,前鋒準則的選取可能造成不同方向的移動速度比較結果產生差異。
英文摘要 Carbon dioxide capture and storage (CCS) is an effective way to reduce carbon dioxide (CO2) emissions into the atmosphere. A deep saline aquifer has the most suitable formation and the largest capability for storing CO2. The purpose of this study is to use analytical and numerical methods to study the front propagation, e.g., plume migration (saturation front) velocity, and migration distance changing with time in two-phase flow in porous media and derived empirical forms of the frontal advance equations. In consider of the complex models in our study, such as 2-dimensional tilted Cartesian and 3-dimensional models, simple analytical solutions were not satifactory. Thus, simulator-generated numerical models were developed to derive empirical equations for estimating plume migration. A variety of operating conditions, such as injection rates, formation permeability and propagation behaviors after stopping CO2 injection were simulated.
The numerical simulation method was used in this study to construct 1D linear, 1D radial, 2D Cartesian (horizontal and tilted models are included), and 3D formations (horizontal and tilted models are included). Shock-front saturation, which is obtained from the fractional flow curve, can be used as a criterion for studying CO2 plume distribution at different observation times from numerical results.
The major results obtained from this study are:(1) Frontal advance empirical equations for different geometric formations were derived. The propagation results of saturation fronts for linear model shows that there is a linear relationship between frontal advance distance (r) and time (t); for radial and 2D Cartesian models, there exist linear relationships between the square of frontal advance distance (r2) and time (t). (2) Saturation front criteria may affect front propagation velocity. If the chosen front criteria are higher, their propagation velocities are slower. However, if the chosen saturation front criteria are smaller than shock front saturation, their propagation velocity may be the same as that of shock front. (3) In consider of constant injection, the plume-migration velocity is proportional to the injection rate. In variable injection, if total injection rates are the same, then the migration velocity can be estimated by using a single injection rate which is calculated from arithmetical average of variable rates. (4) After the cessation of CO2 injection, the plume propagates farther in the reservoir, especially in updip direction. Plume migrates fast in formation with higher dip angle; in contrast, it migrates slower and even backward in downdip direction because of the buoyancy forces. (5) Both during and after injection, the plumes’s front velocity is unchanged along the ridge-line direction regardless of the dip angle; CO2 migration velocity is proportional to dip angles in updip direction and is inversely proportional in downdip direction. (6) 3-dimensional models consisted of five layers shows that in upper layers, plume propagates outward with time increasing; however, in lower layers, plume migrates backwards due to buoyancy effect. (7) In comparison of wells partially penetrated at the bottom layer and wells fully penetrated, the velocity of the CO2 plume in the top layer is unaffected; but in the central and bottom layers, CO2 plume moves faster in a partially penetrated well than those in a fully penetrated well. (8) In 3-dimensional tilted models, CO2 plume move fast in updip direction, follow by ridgeline direction, and move slow in downdip direction. However, CO2 saturation distribution is complicated in middle layer. Thus, the comparison of migration velocity among three flow directions may vary with different front criteria.
論文目次 中文摘要 II
Abstract IV
誌謝 VII
目錄 IX
表目錄 XII
圖目錄 XIII
符號說明 XXI
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 兩相流體前鋒移棲理論 5
2.2 地層及操作參數對團塊移棲行為的影響 8
第三章 理論基礎 11
3.1 分相流方程式(Fractional flow equation) 11
3.2 前鋒推進方程式(Frontal advance equation) 16
3.2.1 線性模式 16
3.2.2 圓柱模式 19
3.3 二氧化碳-水系統前鋒推進方程式 21
3.4 二氧化碳-水系統前鋒推進經驗式 24
第四章 研究流程及步驟 25
第五章 數值模式建立與驗證 28
5.1 水平線性數值模式 28
5.2 一維圓柱數值模式 34
5.3 二維卡氏數值模式 37
5.3.1 水平模式 37
5.3.2 傾斜模式 40
5.4 三維數值模式 44
5.4.1 水平模式 44
5.4.2 傾斜模式 46
第六章 結果 48
6.1 二氧化碳前鋒在一維與二維地層之移棲 48
6.1.1 水平地層 48
6.1.1.1 一維水平線性模式 50
6.1.1.2 一維圓柱模式 52
6.1.1.3 二維水平卡氏模式 54
6.1.1.4 圓柱及水平卡氏地層之前鋒移棲結果比較 56
6.1.2 傾斜地層 57
6.1.2.1 脊線 57
6.1.2.2 上傾角 61
6.1.2.3 下傾角 66
6.2 二氧化碳前鋒在三維空間之移棲 69
6.2.1 水平地層全貫穿井 69
6.2.2 水平地層部分貫穿井 75
6.2.3 傾斜地層全貫穿井 80
6.2.4 傾斜地層部分貫穿井 95
第七章 討論 106
7.1 二氧化碳飽和度前鋒準則對前鋒移棲速度之影響 106
7.2 注入率對於前鋒移棲速度之影響 108
7.2.1 定注入率注儲 108
7.2.2 變注入率注儲 112
7.3 二氧化碳於注儲與停注後之前鋒移棲行為 119
7.3.1 水平地層 119
7.3.2 傾斜地層 123
7.4 三維模式前鋒移棲行為研究 138
7.4.1 與二維地層之二氧化碳飽和度垂向分布比較 138
7.4.2 全貫穿與部分貫穿井對於團塊移棲之影響 141
7.4.3 團塊於地層側向之移棲行為討論 151
7.4.3.1 全貫穿井 151
7.4.3.2 部分貫穿井 160
第八章 結論與建議 164
8.1 結論 164
8.2 建議 165
參考文獻 167
附錄 二氧化碳注入鹽水層前之簡化兩相模式驗證 171
A.1 油層注水模式建立與驗證 171
A.1.1 線性模式 171
A.1.2 圓柱模式 175
A.2 水層注油模式建立與驗證 178
A.2.1 線性模式 178
A.2.2 圓柱模式 180
A.3 水層注天然氣模式建立與驗證 182
A.3.1 線性模式 182
A.3.2 圓柱模式 186
參考文獻 1.Archer, J.S. and Wall, C.G. (1986), Petroleum Engineering: Principles and Practice, Oxford: Graham and Trotman Inc.
2.Buckley, S.E. and Leverett, M.C. (1942), “Mechanism of Fluid Displacement in Sands,” Trans. AIME, 146 (1) pp. 107~116.
3.Burton, M., Kumar, N. and Bryant, S.L. (2008), “Time-Dependent Injectivity During CO2 Storage in Aquifers,” paper SPE 113937 presented at SPE/DOE Symposium on Improved Oil Recovery, 20-23 April, Tulsa, Oklahoma, USA.
4.Burton, M., Kumar, N. and Bryant, S.L. (2009), “CO2 Injectivity into Brine Aquifers: Why Relative Permeability Matters As Much As Absolute Permeability,” Energy Procedia, 1 (1) pp. 3091~3098.
5.Brooks, B.H. and Corey, A.T. (1964), Hydraulic Properties of Porous Media, Civil Engineering Dept., Colorado State University, Colorado: Fort Collins.
6.Bennion, B. and Bachu, S. (2005), “Relative Permeability Characteristics for Supercritical CO2 Displacing Water in a Variety of Potential Sequestration Zones in the Western Canada Sedimentary Basin,” paper SPE 95547 at SPE Annual Technical Conference an Exhibition, 9-12 October, Dallas, TX.
7.Craft, B. C., Hawkins, M. F. and Terry, R. E. (1991), Applied Petroleum Reservoir Engineering (2nd ed.), New Jersey: Prentice Hall, Englewood Cliffs.
8.Craig, F.F. (1971), The Reservoir Engineering Aspects of Waterflooding (Spe Monograph Series, Volume 3), Dallas: Society of Petroleum.
9.Coats, K.H. and Richardson, J.G. (1967), “Calculation of Water Displacement by Gas in Development of Aquifer Storage,” SPE Journal, 7 (2) pp. 105~112.
10.CMG Ltd. (2011), User’s Guide IMEX Advanced Oil/Gas Reservoir Simulator, Calgary, Alberta: Computer Modeling Group Ltd.
11.Corey, A.T. (1954), “The Interrelation Between Gas and Oil Relative Permeabilities,” Prod. Monthly, 19 (1) p. 38.
12.Corey, A.T. and Rathjens, C.H. (1956), “Effect of Stratification on Relative Permeability,” Journal of Petroleum Technology, 8 (12) pp. 69~71.
13.Dardaganian, S. G. (1958), “The Application of the Buckley-Leverett Frontal Advance Theory to Petroleum Recovery,” Journal of Petroleum Technology, 10 (4) pp. 49~52.
14.Dietz, D. N. (1953), “A Theoretical Approach to the Problem of Encroaching and By-Passing Edge Water,” Akad. van Wetenschappen, Amsterdam, Proc. V.56-B:83.
15.Dentz, M. and Tartakovsky, D. M. (2009), “Abrupt-Interface Solution for Carbon Dioxide Injection into Porous Media,” Transp. Porous Med., 79 (1) pp.15~27.
16.Fournier, K.P. (1965), “A Numerical Method for Computing Recovery of Oil By Hot Water Injection in a Radial System,” SPE Journal, 5 (2) pp. 131~140.
17.Fanchi, J.R. (1983), “Multidimensional Numerical Dispersion,” SPE Journal, 23 (1) pp. 143~151.
18.Fanchi, J.R. (2006), Principles of Applied Reservoir Simulation (3rd ed.), Oxford: Elsevier Inc.
19.Hesse, M.A., Tchelepi, H. A and Orr Jr., F. M. (2006), “Scaling Analysis of the Migration of CO2 in Saline Aquifers,” SPE Annual Technical Conference and Exhibition, 24-27 September, San Antonio, Texas, USA.
20.Hawthorne, R.G. (1960), “Two-Phase Flow in Two-Dimensional Systems - Effects of Rate, Viscosity and Density on Fluid Displacement in Porous Media,” Trans. AIME, 219, pp. 81-87.
21.IEA (2008), CO2 Capture and Storage: A Key carbon abatement option, Paris: IEA.
22.IPCC (2005), Carbon DioxideCapture And Storage, England: Cambridge University Press.
23.Jin, M., Pickup, G., Machay, E., and Todd, A. (2010), “Static and Dynamic Estimates of CO2 Storage Capacity in Two Saline Formations in the UK,” SPE EUROPEC/EAGE Annual Conference and Exhibition, 14-17 June 2010, Barcelona, Spain.
24.Kern, L.R. (1952), “Displacement Mechanism in Multi-Well Systems,” Trans. AIME, 4 (2) pp. 39~46.
25.Leverett, M.C. (1941), “Capillary Behavior in Porous Solids,” Trans. AIME, 142 (1) pp. 152~169.
26.Lantz, R.B. (1971), “Quantitative Evaluation of Numerical Diffusion (Truncation Error),” SPE Journal, 11 (3) pp. 315~320.
27.Ling, K. (2012), “Fractional Flow in Radial Flow System-A Study for Peripheral Waterflood,” SPE Latin America and Caribbean Petroleum Engineering Conference, 16-18 April 2012, Mexico City, Mexico.
28.Mattax, C.C. and Dalton, R. L. (1990), Reservoir Simulation (SPE Monograph Series, Vol. 13), USA: SPE Inc.
29.Noh, M., Lake, L.W., Bryant, S.L., and Araque-Martinez, A. (2007), “Implications of Coupling Fractional Flow and Geochemistry for CO2 Injection in Aquifers,” SPE Journal, 10 (4) pp. 406~414.
30.Ozah, R.C., Lakshminarasimhan, S., Pope, G.A., Sepehrnoori, K., and Bryant, S.L. (2005), “Numerical Simulation of the Storage of Pure CO2 and CO2-H2S Gas Mixtures in Deep Saline Aquifers,” SPE Annual Technical Conference and Exhibition, 9-12 October 2005, Dallas, Texas.
31.Ribe, K.H. (1960), “Production Behavior of a Water-Blocked Oil Well,” Trans, AIME, 219, pp. 1~6.
32.Terwilliger, P.L., Wilsey, L. E., Hall, H. N., Bridges, P. M. and Morse, R. A. (1951), “An Experimental and Theoretical Investigation of Gravity Drainage Performance,” Trans. AIME, 192, pp. 285~296.
33.Walsh, M.P. and Moon, G.M. (1991), “An Analysis of Gravity-Dominated, Immiscible Flows in Dipping Reservoirs,” SPE Production Operations Symposium, 7-9 April 1991, Oklahoma City, Oklahoma.
34.Woods, E.G. and Comer, A.G. (1962), “Saturation Distribution and Injection Pressure for A Radial Gas-Storage Reservoir,” Journal of Petroleum Technology, 14 (12) pp. 1389~1393.
35.Welge, H.J. (1952), “A Simplified Method for Computing Oil Recovery by Gas or Water Drive,” Trans. AIME, Vol. 195, pp. 91~98.
36.Wu, Y.S., Fakcharoenphol, P. and Zhang, R. (2010), “Non-Darcy Displacement in Linear Composite and Radial Flow Porous Media,” paper SPE 130343 at SPE EUROPEC/EAGE Annual Conference and Exhibition, 14-17 June, Barcelona, Spain.
37.Willhite, G.P. (1986), Waterflooding (SPE Textbook Series Vol. 3), TX: Richardson.
38.Yortsos, Y.C. and Fokas, A.S. (1983), “An analytical solution for linear waterflood including the effects of capillary pressure,” SPE Journal, 23 (1) pp. 115~124.
39.邱千軒(2012),「鹽水層二氧化碳封存之溶液相及離子相二氧化碳前鋒推進方程式之研究」,國立成功大學資源工程研究所碩士論文。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-06-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-06-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw