進階搜尋


 
系統識別號 U0026-1806201316572600
論文名稱(中文) 合作式網路的封包佇存和延遲之研究
論文名稱(英文) Packet Buffering and Delay in Cooperative Networks
校院名稱 成功大學
系所名稱(中) 電腦與通信工程研究所
系所名稱(英) Institute of Computer & Communication
學年度 101
學期 2
出版年 102
研究生(中文) 林炫利
研究生(英文) Syuan-Li Lin
電子信箱 p123tomx@gmail.com
學號 Q36001583
學位類別 碩士
語文別 英文
論文頁數 43頁
口試委員 指導教授-劉光浩
口試委員-張志文
口試委員-張名先
口試委員-林靖茹
中文關鍵字 合作式無線網路  分集增益  訊雜比增益  緩衝區  中繼站選擇機制 
英文關鍵字 Cooperative networks  buffer  relay selection  outage probability 
學科別分類
中文摘要 在合作式無線網路中,最常見的中繼站選擇機制為選擇一個最佳的中繼站來負責接收和轉傳,以提升分集增益。然而,不同於以往的中繼站選擇機制,最近的研究提出新的概念,其概念為分別選擇出最佳的接收和轉傳中繼站,以提升訊雜比增益,由於最佳的接收和轉傳中繼站不一定為同一個中繼站,中繼站需搭配緩衝區來暫存封包,因此此新概念雖可以提升訊雜比增益,但是會造成嚴重的封包延遲。

而我們的論文,在選擇最佳接收和轉傳中繼站的過程中,除了考慮通道狀況,還額外考慮緩衝區的狀況,其概念為在不影響系統效能下,均勻分配封包於每個中繼站,我們藉由理論分析,證明出我們系統的特性可以成功地均勻分配封包於每個中繼站,此外,我們的模擬結果顯示出,在達成相同訊雜比增益的條件下,相較於參考文獻的系統,我們的系統可以降低96%的封包延遲。
英文摘要 In this thesis, we study the relay selection problem for a finite buffer-aided decode-and-forward (DF) cooperative wireless network. In [1], the author proposed the max-max relay selection (MMRS), which selects the strongest source-relay (S-R) and the strongest relay-destination (R-D) channels for reception and transmission, respectively. Since MMRS may incur data loss when the relay buffer is full, infinite buffer must be assumed. A more practical scheme, called hybrid relay selection (HRS), which combines opportunistic relay (OR) and MMRS has also been proposed for relays with finite buffers. Although HRS achieves the same outage probability as MMRS with infinite buffer size, it incurs severe delay because of the prolonged initialization phase. To mitigate undesired delay for performing cooperative relaying, we propose composite relay selection (CRS), which combines OR and shortest-in longest-out (SILO), to utilize the channel and buffer status simultaneously. The proposed CRS is evaluated theoretically considering a toy example with two relays. Simulations are conducted to validate the analysis accuracy. Extensive comparisons of CRS and other related schemes are also presented. It is shown that the proposed CRS scheme significantly reduces the delay under the same outage probability compared with HRS. In terms of delay, the difference between CRS and HRS is 96% for K=3 relays and SNR=15 dB, and the improvement is more pronounced when the number of relays increases.
論文目次 1 Introduction 1
2 Background and Literature Review 3
2.1 Opportunistic Relay 3
2.2 Max-Max Relay Selection 4
2.3 Hybrid Relay Selection 4
3 Shortest-In Longest-Out Relaying and Composite Relay Selection 6
3.1 System Model 6
3.2 Proposed Schemes 8
3.2.1 Shortest-In Longest-Out Relaying 8
3.2.2 Composite Relay Selection 8
3.3 Performance analysis 9
3.3.1 Opportunistic Relay 9
3.3.2 Shortest-In Longest-Out Relaying 10
3.3.3 Composite Relay Selection 10
3.4 Example 12
3.4.1 Steady-state probability 12
3.4.2 Probability vectors 25
4 Numerical Results and Discussions 27
4.1 Outage Performance 27
4.2 The Impact of Initial Buffer Length 29
4.3 Theoretical and Simulation Results 33
4.4 The Impact of CRS Switching to OR 35
5 Conclusions 37
5.1 Future Works 38
References 39
Appendix 42
參考文獻 [1] A. Ikhlef, D. S. Michalopoulos, and R. Schober, “Max-max relay selection for relays with buffers,” IEEE Trans. Wireless Commun., pp. 1124-1135, March 2012.
[2] A. Bletsas, A. Khisti, D. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE J. Select. Areas Commun., vol. 24, pp. 659-672, March 2006.
[3] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communication in wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp. 74-80, October 2004.
[4] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: E_cient protocols and outage behavior,” IEEE Trans. Wireless Commun., vol. 50, no. 12, pp. 3062-3080, December 2004.
[5] A.Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity, part I and II,” IEEE Trans. Commun., vol. 51, no. 11, November 2003.
[6] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communication in wireless networks,” IEEE Commun. Mag., vol. 42, pp. 74-80, October 2004.
[7] T. Wang, A. Cano, G. B. Giannakis, and J. N. Laneman, “High-performance cooperative demodulation with decode-and-forward relays,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1427-1438, July 2007.
[8] S. Lee, M.Han, T. Yu, and D. Hong, “Average SNR and ergodic capacity analysis for opportunistic DF relaying with outage over rayleigh fading channel,” IEEE Trans. Wireless Commun., vol. 8, p. 2008, June 2009.
[9] J. Vicario, A. Bel, J. Salcedo, and G. Seco, “Opportunistic relay selection with outdated CSI: outage probability and diversity analysis,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2872-2876, June 2009.
[10] J.-B. Kim and D. Kim, “Exact and closed-form outage probability of opportunistic decode-and-forward relaying with unequal-power interferers,” IEEE Trans. Wireless Commun., vol. 9, no. 12, pp. 3601-3606, Dec 2010.
[11] B. Xia, Y. Fan, J. Thompson, and H. V. Poor, “Buffering in a three-node relay network,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4492-4496, November 2008.
[12] N. Zlatanov, R. Schober, and P. Popovski, “Throughput and diversity gain of buffer-aided relaying,” IEEE Global Communications Conference, December 2011.
[13] A. Ikhlef, J. Kim, and R. Schober, “Mimicking full-duplex relaying using half-duplex relays with buffers,” IEEE Trans. Veh. Technol., vol. 61, no. 7, pp. 3025-3037, September 2012.
[14] I. Krikidis, T. Charalambous, and J. S. Thompson, “Buffer-aided relay selection for cooperative diversity systems without delay constraints,” IEEE Trans. Wireless Commun., vol. 11, no. 5, pp. 1957-1967, May 2012.
[15] C. E. Shannon, “A mathematical theory of communication,” Bell Labs Techn. J., vol. XXVII, no. 3, pp. 379-423, July 1948.
[16] J. N. Laneman and G. W. Wornell, “Distributed space time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2415-2425, October 2003.
[17] T. M. Cover and A. A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inform. Theory, vol. IT-25, no. 5, pp. 572-584, September 1979.
[18] D. S. Michalopoulos and G. K. Karagiannidis, “Performance analysis of single-relay selection in rayleigh fading,” IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 3718-3724, October 2008.
[19] G. Bolch, S. Greiner, H. Meer, and K. S. Trivedi, Queueing Networks and Markov Chains, 2nd ed. 1 1 1 River Street, Hoboken, NJ: John Wiley & Sons Inc., 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-06-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-06-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw