進階搜尋


下載電子全文  
系統識別號 U0026-1805201502194000
論文名稱(中文) 任務限制對精神分裂症患者之單手與雙手動作表現之效應
論文名稱(英文) Effects of Task Constraints on Unimanual and Bimanual Movements in Patients With Schizophrenia
校院名稱 成功大學
系所名稱(中) 健康照護科學研究所
系所名稱(英) Institute of Allied Health Sciences
學年度 103
學期 2
出版年 104
研究生(中文) 王淑美
研究生(英文) Shu-Mei Wang
學號 TA8971092
學位類別 博士
語文別 英文
論文頁數 86頁
口試委員 指導教授-馬慧英
口試委員-蘇芳慶
口試委員-林克忠
口試委員-黃英修
口試委員-歐陽文貞
中文關鍵字 動作失調  精神分裂症  運動學  雙手協調  伸手取物  組裝  大小感  距離感  移動的目標物 
英文關鍵字 movement disorders  schizophrenia  kinematics  bimanual coordination  reach-to-grasp  assembly  size perception  distance perception  moving target 
學科別分類
中文摘要 職能治療師時常在臨床治療精神分裂症患者,然而卻缺乏足夠的證據支持治療是有效的。近幾年的研究指出精神分裂症不只影響到患者的心理功能、甚至還會影響到其動作表現,現今針對精神分裂症患者的動作復健相關知識仍不足。在執行動作任務時,物體大小、物體距離、與目標物移動速度都是在復健臨床上很常見的任務限制因子,這些因子已被指出可以有效地影響健康人的動作表現。因此,本研究目的在於比較輕度精神分裂症患者與對照的健康人其動作表現差異、並探討動作任務中的物體大小、物體距離、與目標物移動速度對患者動作表現的效應。
本研究第一個實驗在探討物體大小與物體距離對輕度精神分裂症患者執行伸手取物任務時之單手動作表現的效應。29位患者與15位年齡與性別與之對照的健康人被要求以慣用手伸手拿取不同大小(小與大)與不同距離(近與遠)的物體,動作要愈快愈好。實驗量測的動作參數包含:動作時間、尖峰速度、路徑長度比、逹尖峰速度的時間長度比、與動作單元的數量,分別用來代表動作速度、出力程度、空間效率、控制策略、與平順度。實驗結果發現:相較於健康人,精神分裂症患者表現出類似的出力程度、控制策略、與平順度,然而卻表現出較慢與較不直接的動作;加大物體或縮短物體距離可誘發患者產生較快速與較依賴前饋控制的動作;拉長物體距離誘發患者產生較直接的動作;加大物體、或拉長物體距離則誘發患者產生較有力的動作。
第二個實驗在探討加大物體對輕度精神分裂症患者執行雙手組裝任務時之單手與雙手動作表現的效應。15位患者與15位年齡與性別與之對照的健康人被要求以雙手個別伸手拿取物體、並將物體組裝到靜止的目標物上,動作要愈快愈好。實驗操弄左手拿取的物體大小(小與大)。實驗量測的動作參數包含:動作時間、尖峰速度、與雙手同步程度,分別用來代表動作速度、出力程度、與雙手協調程度。實驗結果發現:相較於健康人,精神分裂症患者顯現出較慢與較無力的單手動作、與較不協調的雙手動作;加大物體可誘發患者產生較快速與較有力的單手動作、與較協調的雙手動作。
第三個實驗在探討目標物移動速度對輕度精神分裂症患者執行雙手組裝任務時之單手與雙手動作表現的效應。15位患者與15位年齡與性別與之對照的健康人被要求以雙手個別伸手拿取物體(伸取動作)、並將物體組裝到移動的目標物上(組裝動作),動作要愈快愈好,實驗操弄目標物移動速度(快與慢)。實驗量測的動作參數包含:動作時間、動作單元的數量、與雙手同步程度,用來分別代表動作速度、平順度、與雙手協調程度。實驗結果發現:提高目標物移動速度可誘發精神分裂症患者產生較快速、較平順、與較協調的動作;在慢速目標物情境下,相較於健康人,患者表現出較慢與較不協調的伸取動作、與表現出較慢、較不平順、與較不協調的組裝動作;然而在快速目標物情境下,相較於健康人,雖然患者仍表現出較慢與較不協調的伸取動作,但其組裝動作表現可提升到健康人表現的程度。
本研究結果使我們對輕度精神分裂症患者的單手與雙手動作特性有了更深入的了解,並指出精神分裂症患者動作治療的必要性。除此之外,本研究具體指明如何在臨床操控任務限制因子,用以誘發精神分裂症患者產生較理想的動作,此結果有助於臨床職能治療師對輕度精神分裂症患者提供具有實證基礎的治療。
英文摘要 Although occupational therapists commonly treat patients with schizophrenia in clinical practice, the profession has been lacking sufficient evidence supporting its effectiveness. Recent studies suggested that schizophrenia affects not only mental function but also movements in patients. The knowledge of movement rehabilitation for patients with schizophrenia has not been developed properly now. Object size, object distance, and target speed of movement tasks are common task constraints in rehabilitation settings and can affect movement formation effectively in healthy people. Therefore, the purposes of this study were to compare the movements of patients with mild schizophrenia and healthy controls and to examine effects of changes in object size, object distance, and target speed on movements in patients.
The first experiment of this study was to examine effects of object size and distance on unimanual movements on the reach-to-grasp task in patients with mild schizophrenia. Twenty-nine patients and 15 age- and gender-matched healthy controls were required to reach for and grasp an object of varying sizes (small v.s. large) and distances (near v.s. far) by the dominant hand as quickly as possible. We measured movement time, peak velocity, the path length ratio, the percentage of time to peak velocity, and the number of movement units to represent movement speed, forcefulness, spatial efficiency, the control strategy, and smoothness. Patients showed similarly forceful, feedback-dependent, and smooth, but slower and less direct movements than controls. Increasing object size or shortening object distance induced faster and more preprogrammed movements in patients. Increasing object distance induced more direct movements in patients. Increasing object size or object distance induced more forceful movements in patients.
The second experiment was to examine effects of object size on unimanual and bimanual movements on the bimanual assembly task in patients with mild schizophrenia. Fifteen patients and 15 age- and gender-matched healthy controls were instructed to bimanually reach for and assemble objects to the stationary target as quickly as possible. We manipulated the object size for the left hand (small vs. large) and measured movement time, peak velocity, and bimanual synchronization to represent movement speed, forcefulness, and bimanual coordination. Patients showed slower and less forceful unimanual movements and less coordinated bimanual movements than controls. Increasing object size elicited faster and more forceful unimanual movements and more coordinated bimanual movements in patients.
The third experiment was to examine effects of target speed on unimanual and bimanual movements on the bimanual assembly task in patients with mild schizophrenia. Fifteen patients and 15 age- and gender-matched healthy controls were instructed to bimanually reach for (prehension) and assemble objects (assembly) to the moving target of varying speed (fast v.s. slow) as quickly as possible. We measured movement time, the number of movement units, and bimanual synchronization to represent movement speed, smoothness, and bimanual coordination. Increasing target speed induced faster, smoother, and more coordinated movements in patients. Under the slow-target condition, patients had slower and less coordinated prehension, as well as slower, more uneven, and less coordinated assembly than controls. Under the fast-target condition, patients still had slower and less coordinated prehension than controls, but their assembly improved to a level similar to that of controls.
This study provides insights into the unimanual and bimanual movement features in patients with mild schizophrenia and suggests the need for movement therapy for patients with schizophrenia. Additionally, this study specifies clinical practice guidelines of manipulating task constraints for optimizing patients’ movements and contributes to the practice of evidence-based occupational therapy for patients with mild schizophrenia.
論文目次 Table of Contents

Chapter 1. Introduction 1
1.1. Research background 1
1.2. Research purposes 3
1.3. Research hypotheses 4
1.4. Research significance 5

Chapter 2. Effects of object size and distance on unimanual movements on the reach-to-grasp task in patients with schizophrenia 7
2.1. Introduction 7
2.2. Methods 9
2.3. Results 13
2.4. Discussion 15
2.5. Conclusion 20

Chapter 3. Effects of object size on unimanual and bimanual movements on the bimanual assembly task in patients with schizophrenia 22
3.1. Introduction 22
3.2. Methods 26
3.3. Results 30
3.4. Discussion 32
3.5. Conclusion 37

Chapter 4. Effects of target speed on unimanual and bimanual movements on the bimanual assembly task in patients with schizophrenia 39
4.1. Introduction 39
4.2. Methods 42
4.3. Results 47
4.4. Discussion 48
4.5. Conclusion 52

Chapter 5. Conclusion and future research 53
5.1. Conclusion 53
5.2. Future research 55

References 56
參考文獻 1.Saha S, Chant D, Welham J, McGrath J. (2005). A systematic review of the prevalence of schizophrenia. http://medicine.plosjournals.org/perlserv?request=get-document&doi=10.1371/journal.pmed.0020141

2.Andreasen NC. Concept of schizophrenia: Past, present, and future. In: Weinberger DR, Harrison PJ, editors. Schizophrenia. Hoboken, NJ: Wiley-Blackwell; 2011. pp 3-8.

3.Brown C. Schizophrenia. In: Brown C, Stoffel VC, editors. Occupational therapy in mental health: A vision for participation. Philadelphia, PA: F. A. Davis; 2011. pp 179-191.

4.Arango C, Carpenter WT. The schizophrenia construct: Symptomatic presentation. In: Weinberger DR, Harrison PJ, editors. Schizophrenia. Hoboken, NJ: Wiley-Blackwell; 2011. pp 9-23.

5.Heiden Wad, Hafner H. Course and outcome. In: Weinberger DR, Harrison PJ, editors. Schizophrenia. Hoboken, NJ: Wiley-Blackwell; 2011. pp 104-141.

6.Crouch R. Activation and psychoeducation: Major principles in the occupational therapist's approach to schizophrenia. In: Crouch R, Alers V, editors. Occupational therapy in psychiatry and mental health. London, England: Whurr; 2005. pp 507-518.

7.MacRae A. Schizophrenia. In: Cara E, MacRae A, editors. Psychosocial occupational therapy: A clinical practice. Clifton Park, NY: Thomson Delmar Learning; 2005. pp 140-161.

8.Lang HC, Su TP. The cost of schizophrenia treatment in Taiwan. Psychiatr Serv 2004;55:928-930.

9.Rogers D. Schizophrenia. In: Rogers D, editor. Motor disorder in psychiatry: Towards a neurological psychiatry. Chichester, U. K.: John Wiley & Sons; 1992. pp 27-39.

10.Gupta S, Andreasen NC, Arndt S, Flaum M, Schultz SK, Hubbard WC, Smith M. Neurological soft signs in neuroleptic-naive and neuroleptic-treated schizophrenic-patients and in normal comparison subjects. Am J Psychiatry 1995;152:191-196.

11.Bellgrove M, Bradshaw J, Velakoulis D, Johnson K, Rogers M, Smith D, Pantelis C. Bimanual coordination in chronic schizophrenia. Brain Cogn 2001;45:325-341.

12.Putzhammer A, Perfahl M, Pfeiff L, Ibach B, Johann M, Zitzelsberger U, Hajak G. Performance of diadochokinetic movements in schizophrenic patients. Schizophr Res 2005;79:271-280.

13.Haddad PM, Mattay VS. Neurological complications of antipsychotic drugs. In: Weinberger DR, Harrison PJ, editors. Schizophrenia. West Sussex, U. K.: Wiley-Blackwell; 2011. pp 561-576.

14.Koning JPF, Tenback DE, van Os J, Aleman A, Kahn RS, van Harten PN. Dyskinesia and parkinsonism in antipsychotic-naive patients with schizophrenia, first-degree relatives and healthy controls: A meta-analysis. Schizophr Bull 2010;36:723-731.

15.Pappa S, Dazzan P. Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: A systematic review. Psychol Med 2009;39:1065-1076.

16.Carnahan H, Elliott D, Velamoor VR. Influence of object size on prehension in leukotomized and unleukotomized individuals with schizophrenia. J Clin Exp Neuropsychol 1996;18:136-147.

17.Whitty PF, Owoeye O, Waddington JL. Neurological signs and involuntary movements in schizophrenia: Intrinsic to and informative on systems pathobiology. Schizophr Bull 2009;35:415-424.

18.Wang CY, Hwang WJ, Fang JJ, Sheu CF, Leong IF, Ma HI. Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: Effects of moving targets. Arch Phys Med Rehabil 2011;92:1238-1245.

19.Schenk T, Baur B, Steude U, Botzel K. Effects of deep brain stimulation on prehensile movements in PD patients are less pronounced when external timing cues are provided. Neuropsychologia 2003;41:783-794.

20.Majsak MJ, Kaminski T, Gentile AM, Gordon AM. Effects of a moving target versus a temporal constraint on reach and grasp in patients with Parkinson's disease. Exp Neurol 2008;210:479-488.

21.Majsak MJ, Kaminski T, Gentile AM, Flanagan JR. The reaching movements of patients with Parkinson's disease under self-determined maximal speed and visually cued conditions. Brain 1998;121:755-766.

22.Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Internal vs external generation of movements: Differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 2003;19:764-776.

23.Wu T, Wang L, Hallett M, Li K, Chan P. Neural correlates of bimanual anti-phase and in-phase movements in Parkinson's disease. Brain 2010;133:2394-2409.

24.Newell KM, Valvano J. Therapeutic intervention as a constraint in learning and relearning movement skills. Scand J Occup Ther 1998;5:51-57.

25.Newell KM. Constraints on the development of coordination. In: Wade MG, Whiting HTA, editors. Motor development in children: Aspects of coordination and conrol. Dordrecht, The Netherlands: Martinus Nijhoff; 1986. pp 341-360.

26.Adam JJ. The effects of objectives and constraints on motor control strategy in reciprocal aiming movements. J Mot Behav 1992;24:173-185.

27.Bingham GP, Hughes K, Mon-Williams M. The coordination patterns observed when two hands reach-to-grasp separate objects. Exp Brain Res 2008;184:283-293.

28.Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 1954;47:381-391.

29.Fowler B, Duck T, Mosher M, Mathieson B. The coordination of bimanual aiming movements: Evidence for progressive desynchronization. Q J Exp Psychol A 1991;2:205-221.

30.Jackson GM, Jackson S, Kritikos A. Attention for action: Coordinating bimanual reach-to-grasp movements. Br J Psychol 1999;90:247-270.

31.Kelso J, Southard DL, Goodman D. On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 1979;5:229-238.

32.Carnahan H, McFadyen BJ. Visuomotor control when reaching toward and grasping moving targets. Acta Psychol (Amst) 1996;92:17-32.

33.Brenner E, Smeets JBJ, de Lussanet MHE. Hitting moving targets: Continuous control of the acceleration of the hand on the basis of the target's velocity. Exp Brain Res 1998;122:467-474.

34.Smeets JBJ, Brenner E. Perception and action are based on the same visual information: Distinction between position and velocity. J Exp Psychol-Hum Percept Perform 1995;21:19-31.

35.Mason AH, Carnahan H. Target viewing time and velocity effects on prehension. Exp Brain Res 1999;127:83-94.

36.Brouwer AM, Brenner E, Smeets JBJ. Hitting moving objects: The dependency of hand velocity on the speed of the target. Exp Brain Res 2000;133:242-248.

37.Van Donkelaar P, Lee RG, Gellman RS. Control strategies in directing the hand to moving targets. Exp Brain Res 1992;91:151-161.

38.Brouwer AM, Smeets JBJ, Brenner E. Hitting moving targets: Effects of target speed and dimensions on movement time. Exp Brain Res 2005;165:28-36.

39.Zago M, McIntyre J, Senot P, Lacquaniti F. Visuo-motor coordination and internal models for object interception. Exp Brain Res 2009;192:571-604.

40.Chieffi S, Fogassi L, Gallese V, Gentilucci M. Prehension movements directed to approaching objects: Influence of stimulus velocity on the transport and the grasp components. Neuropsychologia 1992;30:877-897.

41.Castiello U, Stelmach GE, Lieberman AN. Temporal dissociation of the prehension pattern in Parkinson's disease. Neuropsychologia 1993;31:395-402.

42.Alberts JL, Saling M, Adler CH, Stelmach GE. Disruptions in the reach-to-grasp actions of Parkinson's patients. Exp Brain Res 2000;134:353-362.

43.Canning C. Parkinson's disease. In: Carr J, Shepherd R, editors. Neurological rehabilitation: Optimizing motor performance. Edinburgh, U. K.: Churchill Livingstone Elsevier; 2010. pp 307-334.

44.Abi-Dargham A, Grace AA. Dopamine and schizophrenia. In: Weinberger DR, Harrison PJ, editors. Schizophrenia. Hoboken, NJ: Wiley-Blackwell; 2011. pp 413-432.

45.Gutman SA. Special issue: Effectiveness of occupational therapy services in mental health practice. Am J Occup Ther 2011;65:235-237.

46.Tigges P, Mergl R, Frodl T, Meisenzahl EM, Gallinat J, Schroter A, Riedel M, Muller N, Moller HJ, Hegerl U. Digitized analysis of abnormal hand-motor performance in schizophrenic patients. Schizophr Res 2000;45:133-143.

47.MacRae A. Psychopharmacology for the occupational therapist. In: Cara E, MacRae A, editors. Psychosocial occupational therapy: A clinical practice. Clifton Park, NY: Thomson Delmar Learning; 2005. pp 711-718.

48.Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001;49:1-52.

49.Torrey EF. Studies of individuals with schizophrenia never treated with antipsychotic medications: A review. Schizophr Res 2002;58:101-115.

50.Castiello U, Bennett K, Bonfiglioli C, Lim S, Peppard RF. The reach-to-grasp movement in Parkinson's disease: Response to a simultaneous perturbation of object position and object size. Exp Brain Res 1999;125:453-462.

51.Milner TE, Ijaz MM. The effect of accuracy constraints on three-dimensional movement kinematics. Neuroscience 1990;35:365-374.

52.Wu CY, Lin KC, Chen HC, Chen IH, Hong WH. Effects of modified constraint-induced movement therapy on movement kinematics and daily function in patients with stroke: A kinematic study of motor control mechanisms. Neurorehabil Neural Repair 2007;21:460-466.

53.Platz T, Prass K, Denzler P, Bock S, Mauritz KH. Testing a motor performance series and a kinematic motion analysis as measures of performance in high-functioning stroke patients: Reliability, validity, and responsiveness to therapeutic intervention. Arch Phys Med Rehabil 1999;80:270-277.

54.American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington, DC: Author; 1994.

55.Chouinard G, Margolese HC. Manual for the extrapyramidal symptom rating scale (ESRS). Schizophr Res 2005;76:247-265.

56.Chouinard G, Ross-Chouinard A, Annable L, Jones B. The extrapyramidal symptom rating scale. Can J Neurol Sci 1980;7:233-239.

57.Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-198.

58.Guo NW, Liu HC, Wong PF, Liao KK, Yan SH, Lin KP, Chang CY, Hsu TC. Chinese version and norms of the mini-mental state examination. Journal of Rehabilitation Medicine Association 1988;16:52-59.

59.Cheng JJ, Ho H, Chang CJ, Lan SY, Hwu HG. Positive and negative syndrome scale (PANSS): Establishment and reliability study of a Mandarin Chinese language version. Chinese Psychiatry 1996;10:251-258.

60.Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987;13:261-276.

61.Wu CY, Chen CL, Tang SF, Lin KC, Huang YY. Kinematic and clinical analyses of upper-extremity movements after constraint-induced movement therapy in patients with stroke: A randomized controlled trial. Arch Phys Med Rehabil 2007;88:964-970.

62.Kamper DG, McKenna-Cole AN, Kahn LE, Reinkensmeyer DJ. Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil 2002;83:702-707.

63.Lin KC, Chen YA, Chen CL, Wu CY, Chang YF. The effects of bilateral arm training on motor control and functional performance in chronic stroke: A randomized controlled study. Neurorehabil Neural Repair 2010;24:42-51.

64.Elliott D, Helsen WF, Chua R. A century later: Woodworth's (1899) two-component model of goal-directed aiming. Psychol Bull 2001;127:342-357.

65.Lin KC, Wu CY, Wei TH, Lee CY, Liu JS. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: A randomized controlled study. Clin Rehabil 2007;21:1075-1086.

66.Wu CY, Wong MK, Lin KC, Chen HC. Effects of task goal and personal preference on seated reaching kinematics after stroke. Stroke 2001;32:70-76.

67.Kluzik J, Fetters L, Coryell J. Quantification of control: A preliminary study of effects of neurodevelopmental treatment on reaching in children with spastic cerebral palsy. Phys Ther 1990;70:65-76.

68.Wu CY, Chuang LL, Lin KC, Chen HC, Tsay PK. Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke. Neurorehabil Neural Repair 2011;25:130-139.

69.Cohen J. The analysis of variance. In: Cohen J, editor. Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum; 1988. pp 273-406.

70.MacKenzie CL, Marteniuk RG, Dugas C, Liske D, Eickmeier B. Three-dimensional movement trajectories in Fitts' task: Implications for control. Q J Exp Psychol A 1987;39:629-647.

71.Rose DJ, Christina RW. Visual and vestibular system contributions to action. In: Rose DJ, Christina RW, editors. A multilevel approach to the study of motor control and learning. San Francisco, CA: Pearson/Benjamin Cummings; 2006. pp 93-126.

72.Shumway-Cook A, Woollacott MH. Normal reach, grasp, and manipulation. In: Shumway-Cook A, Woollacott MH, editors. Motor control: Translating research into clinical practice. Philadelphia, PA: Lippincott Williams & Wilkins; 2007. pp 443-467.

73.Young SJ, Pratt J, Chau T. Target-directed movements at a comfortable pace: Movement duration and Fitts's law. J Mot Behav 2009;41:339-346.

74.Wu CY, Lin KC, Lin KH, Chang CW, Chen CL. Effects of task constraints on reaching kinematics by healthy adults. Percept Mot Skills 2005;100:983-994.

75.Arbesman M, Logsdon DW. Occupational therapy interventions for employment and education for adults with serious mental illness: A systematic review. Am J Occup Ther 2011;65:238-246.

76.Bilder RM, Goldman RS, Robinson D, Reiter G, Bell L, Bates JA, Pappadopulos E, Willson DF, Alvir JMJ, Woerner MG, Geisler S, Kane JM, Lieberman JA. Neuropsychology of first-episode schizophrenia: Initial characterization and clinical correlates. Am J Psychiatry 2000;157:549-559.

77.Flyckt L, Sydow O, Bjerkenstedt L, Edman G, Rydin E, Wiesel FA. Neurological signs and psychomotor performance in patients with schizophrenia, their relatives and healthy controls. Psychiatry Res 1999;86:113-129.

78.Fuller R, Jahanshahi M. Concurrent performance of motor tasks and processing capacity in patients with schizophrenia. J Neurol Neurosurg Psychiatry 1999;66:668-671.

79.Delevoye-Turrell Y, Giersch A, Danion JM. Abnormal sequencing of motor actions in patients with schizophrenia: Evidence from grip force adjustments during object manipulation. Am J Psychiatry 2003;160:134-141.

80.Mahaffey L, Holmquist B. Hospital-based mental health care. In: Brown C, Stoffel VC, editors. Occupational therapy in mental health: A vision for participation. Philadelphia, PA: F. A. Davis; 2011. pp 582-594.

81.Carr J, Shepherd R. Reaching and manipulation. In: Carr J, Shepherd R, editors. Neurological rehabilitation: Optimizing motor performance. Edinburgh, U. K.: Churchill Livingstone Elsevier; 2010. pp 123-162.

82.American Occupational Therapy Association. Occupational therapy practice framework: Domain and process (2nd ed.). Am J Occup Ther 2008;62:625-683.

83.Riek S, Tresilian JR, Mon-Williams M, Coppard VL, Carson RG. Bimanual aiming and overt attention: One law for two hands. Exp Brain Res 2003;153:59-75.

84.Srinivasan D, Martin BJ. Eye-hand coordination of symmetric bimanual reaching tasks: Temporal aspects. Exp Brain Res 2010;203:391-405.

85.Lin KC, Wu CY, Lin KH, Chang CW. Effects of task instructions and target location on reaching kinematics in people with and without cerebrovascular accident: A study of the less-affected limb. Am J Occup Ther 2008;62:456-465.

86.Wu CY, Chou SH, Chen CL, Kuo MY, Lu TW, Fu YC. Kinematic analysis of a functional and sequential bimanual task in patients with left hemiparesis: Intra-limb and interlimb coordination. Disabil Rehabil 2009;31:958-966.

87.Henkel V, Mergl R, Schafer M, Rujescu D, Moller HJ, Hegerl U. Kinematical analysis of motor function in schizophrenic patients: A possibility to separate negative symptoms from extrapyramidal dysfunction induced by neuroleptics? Pharmacopsychiatry 2004;37:110-118.

88.Caligiuri MP, Lohr JB. A disturbance in the control of muscle force in neuroleptic-naive schizophrenic patients. Biol Psychiatry 1994;35:104-111.

89.Cortese L, Caligiuri MP, Malla AK, Manchanda R, Takhar J, Haricharan R. Relationship of neuromotor disturbances to psychosis symptoms in first-episode neuroleptic-naive schizophrenia patients. Schizophr Res 2005;75:65-75.

90.Berman I, Viegner B, Merson A, Allan E, Pappas D, Green AI. Differential relationships between positive and negative symptoms and neuropsychological deficits in schizophrenia. Schizophr Res 1997;25:1-10.

91.Keefe RSE, Bilder RM, Harvey PD, Davis SM, Palmer BW, Gold JM, Meltzer HY, Green MF, Miller DD, Canive JM, Adler LW, Manschreck TC, Swartz M, Rosenheck R, Perkins DO, Walker TM, Stroup TS, McEvoy JP, Lieberman JA. Baseline neurocognitive deficits in the CATIE schizophrenia trial. Neuropsychopharmacology 2006;31:2033-2046.

2.Dubrowski A, Lam J, Carnahan H. Target velocity effects on manual interception kinematics. Acta Psychol (Amst) 2000;104:103-118.

93.Morris ME, Iansek R. Characteristics of motor disturbance in Parkinson's disease and strategies for movement rehabilitation. Hum Mov Sci 1996;15:649-669.

94.Christopherson BB, Hayes PD. Valpar component work samples uses in allied health. Tucson, Arizona: Valpar International Corporation; 2006.

95.Brooks VB, Cooke JD, Thomas JS. The continuity of movements. In: Stein RB, Pearson KG, Smith RS, Redford JB, editors. Control of posture and locomotion. New York: Plenum; 1973. pp 257-272.

96.Kraft E, Chen AW, Flaherty AW, Blood AJ, Kwong KK, Jenkins BG. The role of the basal ganglia in bimanual coordination. Brain Res 2007;1151:62-73.

97.Meister IG, Foltys H, Gallea C, Hallett M. How the brain handles temporally uncoupled bimanual movements. Cereb Cortex 2010;20:2996-3004.

98.Jeannerod M. Visuomotor channels: Their integration in goal-directed prehension. Hum Mov Sci 1999;18:201-218.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw