進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1804201923562500
論文名稱(中文) 國產材非膠合集成梁的產製與靜曲行為
論文名稱(英文) Bending behaviour and manufacturing process of non-glue laminated timber made of domestic wood in Taiwan
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 107
學期 2
出版年 108
研究生(中文) 葉衣祺
研究生(英文) Yi-Chi Yeh
學號 N76051209
學位類別 碩士
語文別 中文
論文頁數 151頁
口試委員 指導教授-葉玉祥
召集委員-陳啟仁
口試委員-郭耕杖
口試委員-楊詩弘
中文關鍵字 非膠合集成梁  靜曲實驗  國產柳杉  硬木榫  結構用自攻螺絲 
英文關鍵字 non-glue laminated beam  bending test  domestic wood  hardwood dowel  self-tapping screw 
學科別分類
中文摘要 本研究以國產柳杉作為結構用集成材為對象,主要探討非膠合之集成梁構件的靜曲行為,此構法以施工容易、可回收利用、減低對環境衝擊且具有結構性能。集成梁試體斷面尺寸為150 x 304 mm,跨距3600 mm,依據CNS 11031 集成12組對稱異等級結構用集成材之梁構件,配置等級分為E85-F255與E95-F270。集成材分別採用不同的集成工法,膠合構件之黏著劑作為集成元間的緊固機制,而非膠合構件則以橫貫緊固件提供集成元間的抗剪強度,本研究選用自攻螺絲與硬木榫作為橫貫緊固件,並以間距100 mm、150 mm與200 mm為配置參數;其中,硬木榫直徑為20 mm且鎖入間距為100 mm、150 mm與200 mm;自攻螺絲採用直徑8 mm且鎖入間距為100 mm、150 mm。接著藉由足尺的四點抗彎試驗獲得集成梁之剛度,並和歐洲規範5之有效抗彎剛度公式計算出理論值與實驗值相互比較。
實驗結果顯示膠連接能有效束制梁的彎曲變形,非膠合集成梁之剛度是膠合集成梁約13%。在相同緊固件的參數下,緊固件間距越小剛度增加,非膠合集成梁約提升二至三成的剛度值。緊固件之型式影響剛度值,硬木榫-非膠合集成梁之剛度平均高於約兩成自攻螺絲-非膠合集成梁試體。本研究主要討論荷載-撓度圖比例限度內之第一線性段,12組集成梁試體未達到極限破壞,僅有少數有明顯的劈裂情形,依木纖維方向並不屬於受拉側纖維破壞,說明梁未形成彎矩破壞。最後經由歐洲規範5之有效彎曲剛度公式計算的理論值以評估剪力連接機制的效益,其理論值高估於本研究之實驗值。本研究所獲得的實驗結果可作為未來開發與優化非膠合構件之參考數據。
英文摘要 The paper is focused on the composite behaviour of laminated wooden beams with different shear connections. According to CNS 11031, this study configures symmetric composition of heterogeneous-grade laminated beam, labelled as E95-F270 and E85-F255. The 12 laminated beams apply Taiwanese domestic wood, which is named Japanese cedar, and possess the cross-section of 150 mm x 308 mm and length of 3.6 m. Each beam is composed of eight laminas with thickness of 8 mm. The 12 specimens comprise three types of shear connections, i.e. adhesive, hardwood dowel and self-tapping screw (STS). Among the 12 beams, 6 of them are laminated by means of hardwood dowel whose diameter is 20 mm. The dowels are inserted 90-degree in one row with spacing of 10, 15 and 20 cm. Four beams are transversally laminated by STS whose diameter is 8 mm. The STS is drilled 90-degree to the laminas and its spacing is 10 cm and 15 cm. Two beams are bonded by resin as reference glulam. A four-point bending test rig is intended for estimating the flexural behaviour of the 12 beams. The deflection, load and relative displacement between laminas are recorded and collected simultaneously by data-logging system. These data are used to appraise the bending behaviour, particularly stiffness, of the beams with diverse laminating techniques. Besides the testing, an analytic verification is carried out based on Eurocode 5. The effective bending stiffness formula contributes to evaluate the EI values of each beam. Then, the testing results and theoretaicl values are compared to each other. The testing results indicate that, with the same grade, the stiffness can be achieved. Both non-glue laminated timber reveals the same trend. With the same spacing, the hardwood dowel provides higher stiffness than the STS does.
論文目次 摘要I
Extended AbstractII
誌謝XI
目錄XIII
表目錄XVI
圖目錄XVII
符號表XXI
中英文對照表XXII
第1章 緒論1
1.1 研究動機與目的1
1.2 研究範圍與對象2
1.3 研究方法與流程2
1.4 研究貢獻4
第2章 文獻回顧5
2.1 結構用集成材5
2.1.1 膠合構件5
2.1.2 非膠合構件9
2.2 國產結構用集成材17
2.3 剪力連接機制20
2.4 小結28
第3章 靜曲實驗規劃29
3.1 試體規劃29
3.1.1 柳杉結構用集成梁試體等級配置29
3.1.2 層間剪力連接機制施作流程33
3.2 實驗架規劃與實驗流程41
3.3 剛度解析方法46
第4章 實驗結果與分析49
4.1 集成梁之靜曲實驗數據49
4.1.1 膠合集成梁實驗值分析50
4.1.2 硬木榫-非膠合集成梁實驗值分析54
4.1.3 自攻螺絲-非膠合集成梁實驗值分析64
4.2 實驗值交叉分析72
4.2.1 集成梁之等級實驗值分析72
4.2.2 橫貫緊固件集成梁之實驗值分析78
4.3 有效抗彎剛度公式82
4.4 與文獻分析比較84
第5章 結論與建議89
參考文獻91
附錄A 集成梁試體實驗之基本紀錄95
A.1 膠合集成梁試體95
A.2 硬木榫-非膠合集成梁試體96
A.3 自攻螺絲-非膠合集成梁試體100
附錄B 集成梁試體實驗後之紀錄104
B.1 膠合集成梁試體104
B.2 硬木榫-非膠合集成梁試體107
B.3 自攻螺絲-非膠合集成梁試體136
參考文獻 [1] Gutkowski, R., Brown, K., Shigidi, A., & Natterer, J. (2008). Laboratory tests of composite wood-concrete beams. Construction and Building Materials, 22(6), 1059-1066. Retrieved from http://www.sciencedirect.com/science/article/pii/S0950061807000827. doi:https://doi.org/10.1016/j.conbuildmat.2007.03.013
[2] Ross, R. J. (2010). Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190, 2010: 509 p. 1 v., 190.
[3] EN 408, Timber Structures - Structural Timber and Glued Laminated Timber -Determination of Some Physical and Mechanical Properties, 2012.
[4] Bowers, T., Puettmann, M. E., Ganguly, I., & Eastin, I. (2017). Cradle-to-Gate Life-Cycle Impact Analysis of Glued-Laminated (Glulam) Timber: Environmental Impacts from Glulam Produced in the US Pacific Northwest and Southeast. Forest Products Journal, 67(5/6), 368-380. doi:http://dx.doi.org/10.13073/FPJ-D-17-00008
[5] El Houjeyri, I., Oudjene, M., Khelifa, M., Rogaume, Y., Sotayo, A., & Guan, Z. (2018). Structural performance of double shear softwood and hardwood timber-to-timber joints assembled through densified wood dowels. Paper presented at the 2018 World Conference on Timber Engineering, WCTE 2018, August 20, 2018 - August 23, 2018, Seoul, Korea, Republic of.
[6] Fragiacomo, M., Dujic, B., & Sustersic, I. (2011). Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions. Engineering Structures, 33(11),3043-3053.Retrieved from http://www.sciencedirect.com/science/article/pii/S0141029611002203. doi:https://doi.org/10.1016/j.engstruct.2011.05.020
[7] Gfeller, B., Zanetti, M., Properzi, M., Pizzi, A., Pichelin, F., Lehmann, M., & Delmotte, L. (2003). Wood bonding by vibrational welding. Journal of Adhesion Science and Technology, 17(11), 1573-1589. Retrieved from
https://doi.org/10.1163/156856103769207419. doi:10.1163/156856103769207419
[8] Gubana, A. (2015). State-of-the-Art Report on high reversible timber to timber strengthening interventions on wooden floors. Construction and Building Materials, 97, 25-33. doi:10.1016/j.conbuildmat.2015.06.035
[9] Herzog, T., Natterer, J., Schweitzer, R., Volz, M., & Winter, W. (2012). Timber construction manual: Walter de Gruyter.
[10] EN 1995-1:2004+A2:2014, Eurocode 5: Design of Timber Structures - Part 1-1: Common Rules and Rules for Buildings, CEN, Eur. Comm. Stand., Brussels,2014.
[11] Izzi, M., Casagrande, D., Bezzi, S., Pasca, D., Follesa, M., & Tomasi, R. (2018). Seismic behaviour of Cross-Laminated Timber structures: A state-of-the-art review. Engineering Structures,170,42-52.Retrieved from http://www.sciencedirect.com/science/article/pii/S0141029617338361. doi:https://doi.org/10.1016/j.engstruct.2018.05.060
[12] Jelušič, P., & Kravanja, S. (2018). Flexural analysis of laminated solid wood beams with different shear connections. Construction and Building Materials, 174, 456-465. doi:10.1016/j.conbuildmat.2018.04.102
[13] Moody, R. C., & Hernandez, R. (1997). Glued-laminated timber. Forest Product Laboratory. USDA Forest Service. Madison, Winconsin.
[14] O’Loinsigh, C., Oudjene, M., Ait-Aider, H., Fanning, P., Pizzi, A., Shotton, E., & Meghlat, E. M. (2012). Experimental study of timber-to-timber composite beam using welded-through wood dowels. Construction and Building Materials, 36, 245-250. doi:10.1016/j.conbuildmat.2012.04.118
[15] Pizzi, A., Leban, J. M., Kanazawa, F., Properzi, M., & Pichelin, F. (2004). Wood dowel bonding by high-speed rotation welding. Journal of Adhesion Science and Technology, 18(11), 1263-1278. Retrieved from https://doi.org/10.1163/1568561041588192. doi:10.1163/1568561041588192
[16] Söffker, G. H., & Deplazes, A. (2005). Constructing architecture: materials, processes, structures: Springer Science & Business Media.
[17] Sotayo, A., Au, S.-K., & Guan, Z. (2018). Finite element modelling and testing of timber laminated beams fastened with compressed wood dowels. Paper presented at the 2018 World Conference on Timber Engineering, WCTE 2018, August 20, 2018 - August 23, 2018, Seoul, Korea, Republic of.
[18] Haller, P., Helmbach, C., & Yeh, Y. (2013). Bauweisen, Konstruktionen, Tragwerke und Verbindungen im Holzbau: Auswertung des Archives von Julius Natterer Bois Consult: Inst. für Stahl- und Holzbau, Professur für Ingenieurholzbau und Baukonstruktives Entwerfen.
[19] 日本集成材工業協同組合. (2012). 集成材建築物設計の手引: 大成出版社.
[20] 木質構造研究会. (2012). 新・木質構造建築読本: ティンバーエンジニアリングの実践と展開: 木未来.
[21] 稲山正弘. (2017). 中大規模木造建築物の構造設計の手引き: 彰国社.
[22] 中華民國國家標準. (2014). 結構用集成材 Structural glued-laminated timber. In (Vol. CNS 11031). Taiwan: 中華民國國家標準.
[23] 李佳如, 張夆榕, 林志憲, 與 楊德新. (2014). 35年生國產柳杉分等結構用材之機械性質評估. [Mechanical Properties of 35-year-old Japanese Cedar Graded Structural Lumber in Taiwan]. 林產工業, 33(2), 61-70. doi:10.6561/fpi.2014.33(2).1
[24] 李佳如, 與 楊德新. (2010). 應用非破壞檢測技術評估杉木集成元之抗彎性質. [Evaluation of Bending Properties of China fir Laminae Using Nondestructive Testing]. 林業研究季刊, 32(4), 45-59. doi:10.29898/shbq.201012.0005
[25] 哈重福. (1987). 木材的結構與設計: 明文書局.
[26] 葉民權, 李文雄, 與 林玉麗. (2006). 國產柳杉造林木開發結構用集成材之研究. [Study of Structural Glulam Manufacturing from Domestic Japanese Cedar Plantation Wood]. 臺灣林業科學, 21(4), 531-546. doi:10.7075/tjfs.200612.0531
[27] 葉民權, 林玉麗, 與 宋雲煒. (2018). 結構用自攻螺絲接合之集成材雙剪抵抗性能評估. [Evaluation of the Performance of the Double-Shear Resistance of Glulam Connections Using Structural Self-tapping Screws]. 臺灣林業科學, 33(2), 141-161.
[28] 詹為巽, 與 林俊成. (2016). 國內製材業者使用國產木材之現況. 林業研究專訊, 23(6), 114-117.
[29] 蔡育昇. (2017). 以生命週期評估方法探討高層木構造建築的可行性 -比較木構造與RC構造集合住宅的環境效益. 成功大學, Available from Airiti AiritiLibrary database. (2017年)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw