進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1801202116353200
論文名稱(中文) 方形溝槽設計於微流道內之微粒子慣性聚焦與萃取
論文名稱(英文) Inertial focusing and extraction of microparticles using a microchannel with rectangular notches
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 109
學期 1
出版年 110
研究生(中文) 達信里
研究生(英文) Skinder Ali Dar
學號 P46087027
學位類別 碩士
語文別 英文
論文頁數 70頁
口試委員 指導教授-葉思沂
口試委員-呂宗行
口試委員-吳志勇
口試委員-李定智
中文關鍵字 微流體  慣性力  二次流  長度比  凹槽高度  聚焦效率  流道雷諾數 
英文關鍵字 Microfluidics  Inertial forces  Secondary flow  Length ratio  Notch height  Focusing efficiency  Channel Reynolds number 
學科別分類
中文摘要 本研究計畫開發了一新型微流體裝置,包含三個階段由單流聚焦中的突縮、突擴區域和微流道出口不同尺寸粒子之萃取組成。用以達成單流聚焦以及萃取不同尺寸粒子之目的。單流聚焦技術可應用於流式細胞儀、生物醫學、純化、過濾等多項工程應用中。本篇利用1 μm、6 μm以及12 μm非螢光粒子對於流體聚焦機制進行探討,並利用1μm(紅色)、5μm(綠色)與10μm(綠色)粒子分析萃取過程,使用黃光微影製程進行微流道晶片的製備,由倒置光學顯微鏡配合高速攝影機觀測不同尺寸非螢光粒子的運動情形,而螢光粒子則是通過螢光相機進行動態量測。
初始階段隨機分布的粒子在直流道中變為整齊的兩列流動,並在第二階段當凹槽引入,將產生二維流動,造成微流道出口處從原本兩列合併為單列流動。另外,在水平面中出現渦漩,該渦旋可視為一假想壁面並驅動大尺寸粒子遠離牆體。直徑為6μm和12μm的粒子在長度比(突擴區域的長度與突縮區域的長度之比)為10時有最大聚焦效率,分別為94%和99%,隨著長度比從10降為5時有著明顯的變化。當長度比減少時,隨著二維流動在突擴區域的衰減,即使外加剪應力梯度與壁面作用力,粒子無法獲得足夠的距離保持在平衡位置。當6 μm粒子濃度的降低,聚焦效率提高將近5%。而為將所有粒子聚焦成單列流動,至少需使用30個凹槽。此微流體裝置能夠高效完成流體聚焦以及萃取聚焦流中不同尺寸之粒子,在流式細胞儀與其他生物醫學領域都有相當程度之應用價值。
英文摘要 In this work, we propose a novel microfluidic device comprising of three stages with sudden contraction- expansion regions for single stream focusing and extraction of different size particles at the outlet of microchannel. The single stream focusing at the outlet has a variety of applications in flow cytometry, biomedicine, filtration, purification and other industrial applications. The non-fluorescent particles with diameters 1 μm, 6 μm and 12 μm were utilized to study the focusing mechanism and fluorescent particles with diameters 1 μm (red), 5 μm (green) and 10 μm (green) to analyze the extraction process. The microchannel was fabricated using the lithography process, an inverted optical microscope equipped with high-speed camera used to observe the motion of different size non- fluorescent particles, and fluorescence camera captures the motion of fluorescent particles.
The randomly distributed particles first align to two-equilibrium position in a first stage of the microchannel and with the introduction of notches in the second stage, a secondary flow arises which modifies the two streams of particles to a single stream at the outlet of the channel. Another horizontal vortex arises in horizontal plane, which acts as an imaginary wall and forces the large size particles to get away from the wall. The 6 μm and 12 μm diameter particle shows a maximum focusing efficiency of 94% and 99% respectively with a length ratio (ratio of length of expansion region to the length of contraction region) of 10 and changes abruptly as the length ratio changes from 10 to 5. As the length ratio decreases, the particles do not get enough distance after secondary flow decay in the expansion region to maintain themselves to an equilibrium position with the aid of shear gradient and wall induced forces in the expansion region of the microchannel. With the decrease in the concentration of the 6 μm particles, the focusing efficiency increases up to 5%. Minimum number of 30 notches are required to focus all the particles to a single focusing stream. This microchannel has the ability to focus and extract the specific size of particles from the mixture with high efficiency, which has many applications in the field of flow cytometry and other biomedical applications.
論文目次 Abstract I
摘要 II
Contents III
List of figures V
List of tables VIII
Nomenclature IX
Acknowledgment XI
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Motivation and Objective 2
Chapter 2 Literature review 4
2.1 Microfluidic focusing 4
2.2 Focusing methods 6
2.2.1 Active focusing 6
2.2.2 Passive focusing 7
2.2.2.1 Deterministic lateral displacement (DLD) 7
2.2.2.2 Viscoelastic microfluidics 8
2.2.2.3 Inertial microfluidics 8
2.3 Mechanisms of inertial migration 9
2.3.1 Shear gradient lift force 9
2.3.2 Wall induced lift force 10
2.3.3 Slip and Rotation-induced lift force 11
2.3.4 Secondary-flow drag force 12
2.4 Phenomena of inertial migration 13
2.4.1 Inertial migration in straight channels 13
2.4.2 Inertial migration in Curved channels 17
2.4.3 Inertial migration in straight channels with grooves, herringbones and pillars 21
2.4.4 Inertial migration through expansion contraction channels 23
Chapter 3 Research methods 27
3.1 Channel design and focusing mechanism 28
3.2 Microchannel fabrication 30
3.2.1 Photolithography 30
3.2.1.1 Coating 31
3.2.1.2 Expose 34
3.2.1.3 Develop 36
3.2.2 Soft- lithography 38
3.3 Particle suspension 40
3.4 Experimental setup 41
3.5 Data analysis 42
Chapter 4 Results and Dicussion 44
4.1 Focusing of particles in first stage 44
4.2 Effect of Length ratio (L/C) 46
4.2.1 Effect on 1 μm particle 47
4.2.2 Effect on 6 μm particle 47
4.2.3 Effect on 12 μm particle 52
4.3 Effect of concentration 57
4.4 Effect of number of notches 59
4.5 Extraction of microparticles 61
Chapter 5 Conclusion and Future work 65
5.1 Conclusion 65
5.2 Future work 66
References 67
參考文獻 1. Ranchon, H., et al., DNA separation and enrichment using electro-hydrodynamic bidirectional flows in viscoelastic liquids. Lab on a Chip, 2016. 16(7): p. 1243-1253.
2. Jokerst, J.V., et al., Programmable nano-bio-chip sensors: analytical meets clinical. 2010, ACS Publications.
3. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507(7491): p. 181-189.
4. Sibbitts, J., et al., Cellular analysis using microfluidics. Analytical chemistry, 2018. 90(1): p. 65-85.
5. Bernas, T., et al., Integrating cytomics and proteomics. Molecular & Cellular Proteomics, 2006. 5(1): p. 2-13.
6. Fan, L.-L., et al., Single particle train ordering in microchannel based on inertial and vortex effects. Journal of Micromechanics and Microengineering, 2018. 28(6): p. 065011.
7. Pamme, N., Continuous flow separations in microfluidic devices. Lab on a Chip, 2007. 7(12): p. 1644-1659.
8. Godin, J., et al., Microfluidics and photonics for Bio‐System‐on‐a‐Chip: A review of advancements in technology towards a microfluidic flow cytometry chip. Journal of biophotonics, 2008. 1(5): p. 355-376.
9. Xuan, X., J. Zhu, and C. Church, Particle focusing in microfluidic devices. Microfluidics and nanofluidics, 2010. 9(1): p. 1-16.
10. Shi, J., et al., Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab on a Chip, 2011. 11(14): p. 2319-2324.
11. Shi, X., et al., A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method. Analyst, 2019. 144(20): p. 5934-5946.
12. Pipe, C.J. and G.H. McKinley, Microfluidic rheometry. Mechanics Research Communications, 2009. 36(1): p. 110-120.
13. Zhao, C. and C. Yang, Electrokinetics of non-Newtonian fluids: a review. Advances in colloid and interface science, 2013. 201: p. 94-108.
14. Yuan, D., et al., Recent progress of particle migration in viscoelastic fluids. Lab on a Chip, 2018. 18(4): p. 551-567.
15. Mathi, P.M., et al., Design of Pinched Flow Fractionation Based MEMS Device for Size and Density Based Cell Separation. Journal of Chemical and Pharmaceutical Sciences ISSN. 974: p. 2115.
16. Zhang, T., et al., Focusing of sub-micrometer particles in microfluidic devices. Lab on a Chip, 2020. 20(1): p. 35-53.
17. Zhang, J., et al., Fundamentals and applications of inertial microfluidics: a review. Lab on a Chip, 2016. 16(1): p. 10-34.
18. Li, Y., et al., Dynamic control of particle separation in deterministic lateral displacement separator with viscoelastic fluids. Scientific reports, 2018. 8(1): p. 1-9.
19. Lu, X., et al., Particle manipulations in non-Newtonian microfluidics: A review. Journal of colloid and interface science, 2017. 500: p. 182-201.
20. Asmolov, E.S., The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. Journal of Fluid Mechanics, 1999. 381: p. 63-87.
21. Liu, C., et al., Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab on a Chip, 2015. 15(4): p. 1168-1177.
22. Matas, J.-P., J.F. Morris, and É. Guazzelli, Inertial migration of rigid spherical particles in Poiseuille flow. Journal of Fluid Mechanics, 2004. 515: p. 171.
23. Segre, G. and A. Silberberg, Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. Journal of fluid mechanics, 1962. 14(1): p. 115-135.
24. Zhou, J. and I. Papautsky, Fundamentals of inertial focusing in microchannels. Lab on a Chip, 2013. 13(6): p. 1121-1132.
25. Oakey, J., et al., Particle focusing in staged inertial microfluidic devices for flow cytometry. Analytical chemistry, 2010. 82(9): p. 3862-3867.
26. Feng, J., H.H. Hu, and D.D. Joseph, Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid. Part 2. Couette adn Poiseuille Flows. 1994.
27. Matas, J., J. Morris, and E. Guazzelli, Lateral forces on a sphere. Oil & gas science and technology, 2004. 59(1): p. 59-70.
28. Martel, J.M. and M. Toner, Inertial focusing in microfluidics. Annual review of biomedical engineering, 2014. 16: p. 371-396.
29. Zeng, L., et al., Forces on a finite-sized particle located close to a wall in a linear shear flow. Physics of fluids, 2009. 21(3): p. 033302.
30. Liu, C. and G. Hu, High-throughput particle manipulation based on hydrodynamic effects in microchannels. Micromachines, 2017. 8(3): p. 73.
31. Saffman, P., The lift on a small sphere in a slow shear flow. Journal of fluid mechanics, 1965. 22(2): p. 385-400.
32. Kim, Y.W. and J.Y. Yoo, Axisymmetric flow focusing of particles in a single microchannel. Lab on a Chip, 2009. 9(8): p. 1043-1045.
33. Michaelides, E., Particles, bubbles & drops: their motion, heat and mass transfer. 2006: World Scientific.
34. Di Carlo, D., Inertial microfluidics. Lab on a Chip, 2009. 9(21): p. 3038-3046.
35. Gossett, D.R. and D.D. Carlo, Particle focusing mechanisms in curving confined flows. Analytical chemistry, 2009. 81(20): p. 8459-8465.
36. Amini, H., W. Lee, and D. Di Carlo, Inertial microfluidic physics. Lab on a Chip, 2014. 14(15): p. 2739-2761.
37. Choi, Y.-S., K.-W. Seo, and S.-J. Lee, Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab on a Chip, 2011. 11(3): p. 460-465.
38. Hur, S.C., H.T.K. Tse, and D. Di Carlo, Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab on a Chip, 2010. 10(3): p. 274-280.
39. Gossett, D.R., et al., Inertial manipulation and transfer of microparticles across laminar fluid streams. Small, 2012. 8(17): p. 2757-2764.
40. Berger, S., L. Talbot, and L. Yao, Flow in curved pipes. Annual review of fluid mechanics, 1983. 15(1): p. 461-512.
41. Yoon, D.H., et al., Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab on a Chip, 2009. 9(1): p. 87-90.
42. Russom, A., et al., Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New journal of physics, 2009. 11(7): p. 075025.
43. Bayareh, M., An updated review on particle separation in passive microfluidic devices. Chemical Engineering and Processing-Process Intensification, 2020: p. 107984.
44. Chen, H., A triplet parallelizing spiral microfluidic chip for continuous separation of tumor cells. Scientific reports, 2018. 8(1): p. 1-8.
45. Seo, K.W., Y.S. Choi, and S.J. Lee, Dean-coupled inertial migration and transient focusing of particles in a curved microscale pipe flow. Experiments in fluids, 2012. 53(6): p. 1867-1877.
46. Amini, H., et al., Engineering fluid flow using sequenced microstructures. Nature communications, 2013. 4(1): p. 1-8.
47. Park, J.-S. and H.-I. Jung, Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Analytical chemistry, 2009. 81(20): p. 8280-8288.
48. Chung, A.J., D.R. Gossett, and D. Di Carlo, Three dimensional, sheathless, and high‐throughput microparticle inertial focusing through geometry‐induced secondary flows. Small, 2013. 9(5): p. 685-690.
49. Liu, L., et al., Hydrodynamic separation by changing equilibrium positions in contraction–expansion array channels. Microfluidics and Nanofluidics, 2019. 23(4): p. 52.
50. Xia, Y. and G.M. Whitesides, Soft lithography. Annual review of materials science, 1998. 28(1): p. 153-184.
51. Tan, S.H., et al., Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010. 4(3): p. 032204.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2026-12-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2026-12-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw