進階搜尋


下載電子全文  
系統識別號 U0026-1801201718104700
論文名稱(中文) 以石墨烯作為液態及可印刷式電解質添加劑及其在染料敏化太陽能電池上的應用
論文名稱(英文) Graphene Oxide as an Additive in Liquid and Printable Electrolyte for Dye-sensitized Solar Cell Applications
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 105
學期 1
出版年 106
研究生(中文) 林沼森
研究生(英文) Elmer Surya Darlim
學號 N36047016
學位類別 碩士
語文別 英文
論文頁數 144頁
口試委員 指導教授-李玉郎
口試委員-陳昭宇
口試委員-楊毓民
口試委員-鄧熙聖
中文關鍵字 none 
英文關鍵字 graphene oxide sponge  electrochemical impedance spectroscopy  liquid electrolyte  printable electrolyte  dark current 
學科別分類
中文摘要 none
英文摘要 Graphene oxide (GO) was firstly synthesized from graphite via modified Hummers method. Then it was exfoliated in distilled water and freeze-dried to obtain graphene oxide sponge (GOS). The obtained GOS has spongy, foamy and porous structure compared to sheet-like GO. The GOS was then applied as additive in liquid and quasi-solid electrolyte for dye-sensitized solar cell (DSSC) application. The GOS-liquid electrolyte was then injected to DSSC devices meanwhile the GOS-quasi-solid electrolyte was printed onto photoelectrode active area by doctor blading. The measurement of DSSC devices were performed under one sun illumination (AM 1.5G). For liquid electrolyte system, devices containing 0.6 wt% GOS showed improved cell performance from 8.84% to 9.22%. While for quasi-solid electrolyte system, devices containing 1.5 wt% GOS showed improved cell performance from 8.12% to 8.78%. The improvement of power conversion efficiency for both kind devices was mainly attributed to higher open circuit voltage (Voc) and fill factor (FF). Electrochemical impedance spectroscopy (EIS) analysis was carried out and it elucidated that GOS decreased the electron recombination rate leading to increased Voc. The dark current also confirmed the decreased of dark current indicating that GOS suppressed the electron recombination. As the DSSCs containing quasi-solid electrolyte were subjected for 500 h stability test at 60oC under dark, both without and with additive maintained 79% and 84% of its initial efficiency while the DSSC with liquid electrolyte maintained only 42% of its initial efficiency.
論文目次 ABSTRACT I
EXTENDED ABSTRACT II
ACKNOWLEDGEMENT XI
TABLE OF CONTENTS XIV
LIST OF FIGURES XVII
LIST OF TABLES XXII
CHAPTER 1 Introduction 1
1.1 Background and Motivations 1
1.2 Objectives 3
1.3 Outline 6
CHAPTER 2 Literature review and summary 8
2.1 Milestone of photovoltaic productiom 8
2.2 Structure and operational for DSSC 9
2.3 Materials and components for DSSC 16
2.3.1 Substrate 16
2.3.2 Semiconductor photoelectrodes 17
2.3.3 Dye (photosensitizer) 22
2.3.4 Electrolytes 34
2.3.5 Platinum (Pt) counter electrode 41
2.4 Graphene oxide 43
2.4.1 Chemical properties of GO 43
2.4.2 Applications of GO in DSSCs application 45
2.5 Characterizations of DSSC 48
2.5.1 Solar spectrum 48
2.5.2 I-V Characteristics 50
2.5.3 Spectral response of DSSC 53
2.5.4 Electrochemical impedance spectroscopy (EIS) 55
CHAPTER 3 Experimental 62
3.1 Chemicals and materials 62
3.1.1 Photoelectrode 62
3.1.2 Solvent and cleaner 63
3.1.3 Polymer and electrolyte components 63
3.1.4 Preparation of graphene oxide chemicals 63
3.1.5 Cell assembly components 63
3.1.6 Other supporting chemicals and materials 64
3.2 Devices and instrumentations 64
3.3 Experimental procedures 81
3.3.1 Preparation of graphene oxide sponge (GOS) 82
3.3.2 Fluorine-doped tin oxide (FTO) glass cleaning procedure 83
3.3.3 Preparation of photoelectrode 84
3.3.4 Preparation of electrolytes 85
3.3.5 Cell assembling 87
3.3.6 Analysis 89
CHAPTER 4 Results and Discussions 92
4.1 Characterizations of GOS 92
4.1.1 Atomic force microscopy (AFM) of GO 92
4.1.2 Fourier-transform infrared (FT-IR) 93
4.1.3 Raman spectroscopy 94
4.1.4 X-Ray photoelectron spectroscopy (XPS) 95
4.1.5 Scanning electron microscopy (SEM) 99
4.1.6 Transmission electron microscopy TEM) 101
4.2 GOS as an additive in liquid electrolyte for DSSCs 103
4.3 GOS as an additive in printable electrolyte for DSSCs 113
CHAPTER 5 Conclusions and Recommendations 124
5.1 Conclusions 124
5.2 Recommendations 125
REFERENCES 126
參考文獻 1. BP Statistical Review of World Energy 2016- Full Report. (2016).
2. N. Armaroli, V. Balzani, The future of energy supply: Challenges and opportunities. Angewandte Chemie 46, 52-66 (2007).
3. L. M. Gonçalves, V. de Zea Bermudez, H. A. Ribeiro, A. M. Mendes, Dye-sensitized solar cells: A safe bet for the future. Energy & Environmental Science 1, 655 (2008).
4. M. J. Tayebjee, D. R. McCamey, T. W. Schmidt, Beyond Shockley-Queisser: Molecular Approaches to High-Efficiency Photovoltaics. The Journal of Physical Chemistry Letters 6, 2367-2378 (2015).
5. M. Grätzel, Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4, 145-153 (2003).
6. C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Gratzel, C.-G. Wu, S. M. Zakeeruddin, M. Gratzel, in ACS Nano. (2009), vol. 3, pp. 3103.
7. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629-634 (2011).
8. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry 6, 242-247 (2014).
9. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications 51, 15894-15897 (2015).
10. J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry 80, (2008).
11. M. S. Su’ait, M. Y. A. Rahman, A. Ahmad, Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy 115, 452-470 (2015).
12. N. Sharifi, F. Tajabadi, N. Taghavinia, Recent developments in dye-sensitized solar cells. Chemphyschem : a European journal of chemical physics and physical chemistry 15, 3902-3927 (2014).
13. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells. Chemical Reviews 115, 2136-2173 (2015).
14. T.-F. Yeh, J. Cihlář, C.-Y. Chang, C. Cheng, H. Teng, Roles of graphene oxide in photocatalytic water splitting. Materials Today 16, 78-84 (2013).
15. G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J. R. Gong, Graphene-based materials for hydrogen generation from light-driven water splitting. Advanced Materials 25, 3820-3839 (2013).
16. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C 113, 13103 (2009).
17. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy & Environmental Science 4, 2826 (2011).
18. C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters 10, 4863-4868 (2010).
19. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 257, 421-443 (2014).
20. M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology 47, 3715-3723 (2013).
21. G. Z. Kyzas, E. A. Deliyanni, K. A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology & Biotechnology 89, 196-205 (2014).
22. R. K. Upadhyay, N. Soin, S. S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Advances 4, 3823-3851 (2014).
23. L. Wang, K. Lee, Y.-Y. Sun, M. Lucking, Z. Chen, J. J. Zhao, S. B. Zhang, Graphene Oxide as an Ideal Substrate for Hydrogen Storage. ACS Nano 3, 2995 (2009).
24. V. Tozzini, V. Pellegrini, Prospects for hydrogen storage in graphene. Physical Chemistry Chemical Physics : PCCP 15, 80-89 (2013).
25. J. Gun, S. A. Kulkarni, W. Xiu, S. K. Batabyal, S. Sladkevich, P. V. Prikhodchenko, V. Gutkin, O. Lev, Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells. Electrochemistry Communications 19, 108-110 (2012).
26. C. Y. Neo, J. Ouyang, The production of organogels using graphene oxide as the gelator for use in high-performance quasi-solid state dye-sensitized solar cells. Carbon 54, 48-57 (2013).
27. C. Y. Neo, N. K. Gopalan, J. Ouyang, Graphene oxide/multi-walled carbon nanotube nanocomposites as the gelator of gel electrolytes for quasi-solid state dye-sensitized solar cells. Journal of Materials Chemistry A 2, 9226 (2014).
28. B. Lin, T. Feng, F. Chu, S. Zhang, N. Yuan, G. Qiao, J. Ding, Poly(ionic liquid)/ionic liquid/graphene oxide composite quasi solid-state electrolytes for dye sensitized solar cells. RSC Advances 5, 57216-57222 (2015).
29. B. Lin, H. Shang, F. Chu, Y. Ren, N. Yuan, B. Jia, S. Zhang, X. Yu, Y. Wei, J. Ding, Ionic liquid-tethered Graphene Oxide/Ionic Liquid Electrolytes for Highly Efficient Dye Sensitized Solar Cells. Electrochimica Acta 134, 209-214 (2014).
30. M. S. Akhtar, S. Kwon, F. J. Stadler, O. B. Yang, High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes. Nanoscale 5, 5403-5411 (2013).
31. S. Yuan, Q. Tang, B. Hu, C. Ma, J. Duan, B. He, Efficient quasi-solid-state dye-sensitized solar cells from graphene incorporated conducting gel electrolytes. Journal of Materials Chemistry A 2, 2814 (2014).
32. S. Yuan, Q. Tang, B. He, Y. Zhao, Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. Journal of Power Sources 260, 225-232 (2014).
33. Y.-C. Hsu, L.-C. Tseng, R.-H. Lee, Graphene oxide sheet-polyaniline nanohybrids for enhanced photovoltaic performance of dye-sensitized solar cells. Journal of Polymer Science Part B: Polymer Physics 52, 321-332 (2014).
34. M. Khannam, S. Sharma, S. Dolui, S. K. Dolui, A graphene oxide incorporated TiO2 photoanode for high efficiency quasi solid state dye sensitized solar cells based on a poly-vinyl alcohol gel electrolyte. RSC Advances 6, 55406-55414 (2016).
35. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide. Chemical Society Reviews 39, 228-240 (2010).
36. Y. Ma, Y. Chen, Three-dimensional graphene networks: synthesis, properties and applications. National Science Review 2, 40-53 (2015).
37. V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science 7, 1564 (2014).
38. S. K. Ahn, T. Ban, P. Sakthivel, J. W. Lee, Y. S. Gal, J. K. Lee, M. R. Kim, S. H. Jin, Development of dye-sensitized solar cells composed of liquid crystal embedded, electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers as polymer gel electrolytes. ACS Applied Materials & Interfaces 4, 2096-2100 (2012).
39. C. Wang, L. Wang, Y. Shi, H. Zhang, T. Ma, Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta 91, 302-306 (2013).
40. S. Venkatesan, S.-C. Su, W.-N. Hung, I. P. Liu, H. Teng, Y.-L. Lee, Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application. Journal of Power Sources 298, 385-390 (2015).
41. C. L. Chen, H. Teng, Y. L. Lee, In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells. Advanced Materials 23, 4199-4204 (2011).
42. Y. I. Kang, J. H. Moon, In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells. ChemSusChem 8, 3799-3804 (2015).
43. M.-S. Kang, K.-S. Ahn, J.-W. Lee, Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes. Journal of Power Sources 180, 896-901 (2008).
44. S. Venkatesan, I. P. Liu, L. T. Chen, Y. C. Hou, C. W. Li, Y. L. Lee, Effects of TiO2 and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System. ACS Applied Materials & Interfaces 8, 24559-24566 (2016).
45. A. Becquerel, Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Originalarbeit zur Einwirkung von Licht auf Elektroden Comptes Rendus 9: 561–567, (1839).
46. D. M. Chapin, C. Fuller, G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 25, 676-677 (1954).
47. V. V. Tyagi, N. A. A. Rahim, N. A. Rahim, J. A. L. Selvaraj, Progress in solar PV technology: Research and achievement. Renewable and Sustainable Energy Reviews 20, 443-461 (2013).
48. http://www.nrel.gov/pv/. (2016).
49. W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chemistry of Materials 22, 1915-1925 (2010).
50. N. Sridhar, D. Freeman, in 26th European Photovoltaic Solar Energy Conference and Exhibition. (2011), pp. 232-236.
51. F. De Rossi, T. Pontecorvo, T. M. Brown, Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy 156, 413-422 (2015).
52. G. Kapil, Y. Ogomi, S. S. Pandey, T. Ma, S. Hayase, Indoor Light Performance of Coil Type Cylindrical Dye Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology 16, 3183-3187 (2016).
53. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737-740 (1991).
54. M. Grätzel, Photoelectrochemical cells. Nature 414, 338-344 (2001).
55. D. Wei, Dye sensitized solar cells. International Journal of Molecular Sciences 11, 1103-1113 (2010).
56. A. J. McEvoy, L. Castaner, T. Markvart, Solar cells: materials, manufacture and operation. Academic Press (2012).
57. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chemical Reviews 110, 6595-6663 (2010).
58. F. Marlow, A. Hullermann, L. Messmer, Is the Charge Transport in Dye‐Sensitized Solar Cells Really Understood? Advanced Materials 27, 2447-2452 (2015).
59. B. E. Hardin, H. J. Snaith, M. D. McGehee, The renaissance of dye-sensitized solar cells. Nature Photonics 6, 162-169 (2012).
60. M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry 44, 6841-6851 (2005).
61. S. Ngamsinlapasathian, A. Kitiyanan, T. Fujieda, S. Yoshikawa, Effects of Substrates on Dye-Sensitized Solar Cell Performance Using Nanocrystalline TiO2. ECS Transactions 1, 7-15 (2006).
62. D.-J. Kwak, B.-H. Moon, D.-K. Lee, C.-S. Park, Y.-M. Sung, Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application. Journal of Electrical Engineering and Technology 6, 684-687 (2011).
63. T. Kawashima, H. Matsui, N. Tanabe, New transparent conductive films: FTO coated ITO. Thin Solid Films 445, 241-244 (2003).
64. M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, Nanostructured dye solar cells on flexible substrates—Review. International Journal of Energy Research 33, 1145-1160 (2009).
65. K. Yoo, J.-Y. Kim, J. A. Lee, J. S. Kim, D.-K. Lee, K. Kim, J. Y. Kim, B. Kim, H. Kim, W. M. Kim, Completely Transparent Conducting Oxide-Free and Flexible Dye-Sensitized Solar Cells Fabricated on Plastic Substrates. ACS Nano 9, 3760-3771 (2015).
66. H. C. Weerasinghe, F. Huang, Y.-B. Cheng, Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2, 174-189 (2013).
67. A. Yugis, R. Mansa, C. Sipaut, in IOP Conference Series: Materials Science and Engineering. (IOP Publishing, 2015), vol. 78, pp. 012003.
68. B. Wang, L. L. Kerr, Dye sensitized solar cells on paper substrates. Solar Energy Materials and Solar Cells 95, 2531-2535 (2011).
69. J. Maçaira, L. Andrade, A. Mendes, Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells. Renewable and Sustainable Energy Reviews 27, 334-349 (2013).
70. C. C. Raj, R. Prasanth, A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. Journal of Power Sources 317, 120-132 (2016).
71. P. Jayaweera, A. Perera, K. Tennakone, Why Gratzel’s cell works so well. Inorganica Chimica Acta 361, 707-711 (2008).
72. Y. Bai, I. Mora-Sero, F. De Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications. Chemical Reviews 114, 10095-10130 (2014).
73. N.-G. Park, J. Van de Lagemaat, A. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B 104, 8989-8994 (2000).
74. J.-Y. Liao, J.-W. He, H. Xu, D.-B. Kuang, C.-Y. Su, Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres. Journal of Materials Chemistry 22, 7910-7918 (2012).
75. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today 18, 155-162 (2015).
76. Q. Zhang, G. Cao, Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6, 91-109 (2011).
77. K. Cao, M. Wang, Recent developments in sensitizers for mesoporous sensitized solar cells. Frontiers of Optoelectronics 6, 373-385 (2013).
78. S. Shalini, R. Balasundaraprabhu, T. S. Kumar, N. Prabavathy, S. Senthilarasu, S. Prasanna, Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. International Journal of Energy Research, (2016).
79. S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy & Environmental Science 6, 1443-1464 (2013).
80. S. Shalini, S. Prasanna, T. K. Mallick, S. Senthilarasu, Review on natural dye sensitized solar cells: Operation, materials and methods. Renewable and Sustainable Energy Reviews 51, 1306-1325 (2015).
81. J.-K. Lee, M. Yang, Progress in light harvesting and charge injection of dye-sensitized solar cells. Materials Science and Engineering: B 176, 1142-1160 (2011).
82. G. C. Vougioukalakis, A. I. Philippopoulos, T. Stergiopoulos, P. Falaras, Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordination Chemistry Reviews 255, 2602-2621 (2011).
83. L.-L. Li, E. W.-G. Diau, Porphyrin-sensitized solar cells. Chemical Society Reviews 42, 291-304 (2013).
84. M. J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G. G. Wallace, D. L. Officer, A. Furube, R. Katoh, S. Mori, A. J. Mozer, Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chemical Communications 48, 4145-4162 (2012).
85. W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews 248, 1363-1379 (2004).
86. A. Mishra, M. K. Fischer, P. Bäuerle, Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition 48, 2474-2499 (2009).
87. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry B 107, 597-606 (2003).
88. I. Obotowo, I. Obot, U. Ekpe, Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives. Journal of Molecular Structure 1122, 80-87 (2016).
89. S. Ito, S. M. Zakeeruddin, R. Humphry‐Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, High‐Efficiency Organic‐Dye‐Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness. Advanced Materials 18, 1202-1205 (2006).
90. Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. Journal of the American Chemical Society 133, 11442-11445 (2011).
91. N. Zhou, K. Prabakaran, B. Lee, S. H. Chang, B. Harutyunyan, P. Guo, M. R. Butler, A. Timalsina, M. J. Bedzyk, M. A. Ratner, Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells. Journal of the American Chemical Society 137, 4414-4423 (2015).
92. H. Hug, M. Bader, P. Mair, T. Glatzel, Biophotovoltaics: natural pigments in dye-sensitized solar cells. Applied Energy 115, 216-225 (2014).
93. N. A. Ludin, A. A.-A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopian, N. S. A. Karim, Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews 31, 386-396 (2014).
94. M. R. Narayan, Review: dye sensitized solar cells based on natural photosensitizers. Renewable and Sustainable Energy Reviews 16, 208-215 (2012).
95. S. Hao, J. Wu, Y. Huang, J. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy 80, 209-214 (2006).
96. B. E. Hardin, E. T. Hoke, P. B. Armstrong, J.-H. Yum, P. Comte, T. Torres, J. M. Fréchet, M. K. Nazeeruddin, M. Grätzel, M. D. McGehee, Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photonics 3, 406-411 (2009).
97. N. D. Eisenmenger, K. T. Delaney, V. Ganesan, G. H. Fredrickson, M. L. Chabinyc, Improving Energy Relay Dyes for Dye Sensitized Solar Cells by Increasing Donor Homotransfer. The Journal of Physical Chemistry C 118, 14098-14106 (2014).
98. M. M. Rahman, M. J. Ko, J.-J. Lee, Novel energy relay dyes for high efficiency dye-sensitized solar cells. Nanoscale 7, 3526-3531 (2015).
99. G. Y. Margulis, B. Lim, B. E. Hardin, E. L. Unger, J.-H. Yum, J. M. Feckl, D. Fattakhova-Rohlfing, T. Bein, M. Grätzel, A. Sellinger, Highly soluble energy relay dyes for dye-sensitized solar cells. Physical Chemistry Chemical Physics 15, 11306-11312 (2013).
100. Z. Yu, N. Vlachopoulos, M. Gorlov, L. Kloo, Liquid electrolytes for dye-sensitized solar cells. Dalton Transactions 40, 10289-10303 (2011).
101. L. Giribabu, R. Bolligarla, M. Panigrahi, Recent Advances of Cobalt (II/III) Redox Couples for Dye‐Sensitized Solar Cell Applications. The Chemical Record 15, 760-788 (2015).
102. M. Wang, C. Grätzel, S. M. Zakeeruddin, M. Grätzel, Recent developments in redox electrolytes for dye-sensitized solar cells. Energy & Environmental Science 5, 9394-9405 (2012).
103. G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research 42, 1819-1826 (2009).
104. J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 16, 5848-5860 (2012).
105. F. Bella, C. Gerbaldi, C. Barolo, M. Grätzel, Aqueous dye-sensitized solar cells. Chemical Society Reviews 44, 3431-3473 (2015).
106. H. J. Snaith, L. Schmidt‐Mende, Advances in liquid‐electrolyte and solid‐state dye‐sensitized solar cells. Advanced Materials 19, 3187-3200 (2007).
107. I. Chung, B. Lee, J. He, R. P. Chang, M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486-489 (2012).
108. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel, Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society 125, 1166-1167 (2003).
109. Q. Xiao, H. Yang, Y. F. Cheng, Z. G. Zhou, Z. G. Chen, F. Y. Li, T. Yi, C. H. Huang, Ionic Liquid Based Electrolyte with Mesoporous Silica SBA‐15 as Framework for Quasi‐solid‐state Dye‐sensitized Solar Cells. Chinese Journal of Chemistry 24, 1737-1740 (2006).
110. H. Usui, H. Matsui, N. Tanabe, S. Yanagida, Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes. Journal of Photochemistry and Photobiology A: Chemistry 164, 97-101 (2004).
111. T. Kato, S. Hayase, Quasi-solid dye sensitized solar cell with straight ion paths proposal of hybrid electrolytes for ionic liquid-type electrolytes. Journal of the Electrochemical Society 154, B117-B121 (2007).
112. J. H. Park, B.-W. Kim, J. H. Moon, Dual functions of clay nanoparticles with high aspect ratio in dye-sensitized solar cells. Electrochemical and Solid-State Letters 11, B171-B173 (2008).
113. O. Ileperuma, Gel polymer electrolytes for dye sensitised solar cells: a review. Materials Technology 28, 65-70 (2013).
114. M. Dissanayake, L. Bandara, R. Bokalawala, P. Jayathilaka, O. Ileperuma, S. Somasundaram, A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell. Materials Research Bulletin 37, 867-874 (2002).
115. Y. J. Kim, J. H. Kim, M. S. Kang, M. J. Lee, J. Won, J. C. Lee, Y. S. Kang, Supramolecular Electrolytes for Use in Highly Efficient Dye‐Sensitized Solar Cells. Advanced materials 16, 1753-1757 (2004).
116. P. J. Li, J. H. Wu, M. L. Huang, Z. Lan, Q. Li, S. Kang, The application of P (MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature. Electrochimica Acta 53, 903-908 (2007).
117. M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, N.-G. Park, J. S. Hong, K.-J. Kim, Dye-sensitized TiO2 solar cells using polymer gel electrolytes based on PVdF-HFP. Journal of The Electrochemical Society 151, E257-E260 (2004).
118. X. Shen, W. Xu, J. Xu, G. Liang, H. Yang, M. Yao, Quasi-solid-state dye-sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts. Solid State Ionics 179, 2027-2030 (2008).
119. S.-J. Seo, H.-J. Cha, Y. S. Kang, M.-S. Kang, Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells. Electrochimica Acta 145, 217-223 (2014).
120. T. N. Murakami, M. Grätzel, Counter electrodes for DSC: application of functional materials as catalysts. Inorganica Chimica Acta 361, 572-580 (2008).
121. S. Thomas, T. Deepak, G. Anjusree, T. Arun, S. V. Nair, A. S. Nair, A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A 2, 4474-4490 (2014).
122. L. Wang, M. Al-Mamun, P. Liu, Y. Wang, H. G. Yang, H. F. Wang, H. Zhao, The search for efficient electrocatalysts as counter electrode materials for dye-sensitized solar cells: mechanistic study, material screening and experimental validation. NPG Asia Materials 7, e226 (2015).
123. W. Kwon, J.-M. Kim, S.-W. Rhee, Electrocatalytic carbonaceous materials for counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A 1, 3202-3215 (2013).
124. J. Theerthagiri, A. R. Senthil, J. Madhavan, T. Maiyalagan, Recent Progress in Non‐Platinum Counter Electrode Materials for Dye‐Sensitized Solar Cells. ChemElectroChem 2, 928-945 (2015).
125. K. Saranya, M. Rameez, A. Subramania, Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. European Polymer Journal 66, 207-227 (2015).
126. D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical Reviews 112, 6027-6053 (2012).
127. W. S. Hummers Jr, R. E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society 80, 1339-1339 (1958).
128. O. C. Compton, S. T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials. small 6, 711-723 (2010).
129. S. Eigler, A. Hirsch, Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angewandte Chemie 53, 7720-7738 (2014).
130. Magne, Constance. Optimisation de couches d'oxyde nano-structurées pour applications aux cellules solaires à colorant. Diss. Université Pierre et Marie Curie-Paris VI, (2012).
131. P. Sommeling, H. Rieffe, J. Van Roosmalen, A. Schönecker, J. Kroon, J. Wienke, A. Hinsch, Spectral response and IV-characterization of dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and solar cells 62, 399-410 (2000).
132. Z. Chen, T. G. Deutsch, H. N. Dinh, K. Domen, K. Emery, A. J. Forman, N. Gaillard, R. Garland, C. Heske, T. F. Jaramillo, in Photoelectrochemical Water Splitting. (Springer, 2013), pp. 87-97.
133. Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells. The Journal of Physical Chemistry B 110, 25210-25221 (2006).
134. Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. The Journal of Physical Chemistry B 109, 14945-14953 (2005).
135. J. Bisquert, F. Fabregat-Santiago, Impedance spectroscopy: A general introduction and application to dye-sensitized solar cells. (2010).
136. Á. Pitarch, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, Electrochemical impedance spectra for the complete equivalent circuit of diffusion and reaction under steady-state recombination current. Physical Chemistry Chemical Physics 6, 2983-2988 (2004).
137. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochimica Acta 47, 4213-4225 (2002).
138. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. The Journal of Physical Chemistry C 111, 6550-6560 (2007).
139. J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J. Tascon, Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25, 5957-5968 (2009).
140. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano letters 7, 238-242 (2007).
141. F. Tuinstra, J. L. Koenig, Raman spectrum of graphite. The Journal of Chemical Physics 53, 1126-1130 (1970).
142. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Raman spectrum of graphene and graphene layers. Physical review letters 97, 187401 (2006).
143. W. Chen, L. Yan, P. R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48, 1146-1152 (2010).
144. H. Ham, T. Van Khai, N.-H. Park, D. S. So, J.-W. Lee, H. G. Na, Y. J. Kwon, H. Y. Cho, H. W. Kim, Freeze-drying-induced changes in the properties of graphene oxides. Nanotechnology 25, 235601 (2014).
145. G. Beamson, D. Briggs, High resolution XPS of organic polymers : the Scienta ESCA300 database. (Wiley, Chichester [England]; New York, 1992).
146. J. Wang, X. Gao, Y. Wang, C. Gao, Novel graphene oxide sponge synthesized by freeze-drying process for the removal of 2, 4, 6-trichlorophenol. RSC Advances 4, 57476-57482 (2014).
147. R. Wu, B. Yu, X. Liu, H. Li, W. Wang, L. Chen, Y. Bai, Z. Ming, S.-T. Yang, One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents. Applied Surface Science 362, 56-62 (2016).
148. S. Liu, H. Zhang, D. Peng, D. Yuan, L. Wu, J. Ma, Uranium uptake with graphene oxide sponge prepared by facile EDTA‐assisted hydrothermal process. International Journal of Energy Research, (2016).
149. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, J. Huang, Graphene oxide sheets at interfaces. Journal of the American Chemical Society 132, 8180-8186 (2010).
150. D. Tristant, P. Puech, I. C. Gerber, Theoretical study of polyiodide formation and stability on monolayer and bilayer graphene. Physical Chemistry Chemical Physics 17, 30045-30051 (2015).
151. J. E. Benedetti, A. D. Goncalves, A. L. Formiga, M.-A. De Paoli, X. Li, J. R. Durrant, A. F. Nogueira, A polymer gel electrolyte composed of a poly (ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. Journal of Power Sources 195, 1246-1255 (2010).
152. J. E. Benedetti, A. A. Correa, M. Carmello, L. C. Almeida, A. S. Goncalves, A. F. Nogueira, Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells. Journal of Power Sources 208, 263-270 (2012).
153. S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, Control of dark current in photoelectrochemical (TiO2/I−–I3−) and dye-sensitized solar cells. Chemical Communications, 4351-4353 (2005).
154. Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, Ultraviolet-visible spectroscopy of graphene oxides. AIP Advances 2, 032146 (2012).
155. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells 70, 151-161 (2001).
156. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society 133, 10878-10884 (2011).
157. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B 107, 8981-8987 (2003).
158. Y.-F. Chan, C.-C. Wang, C.-Y. Chen, Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-D graphenes incorporated. Journal of Materials Chemistry A 1, 5479 (2013).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-10-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw