系統識別號 U0026-1712201922560700
論文名稱(中文) 具加強肋矩形薄壁容器受內壓時之力學分析
論文名稱(英文) Mechanical analysis of rib-reinforced rectangular thin-walled vessel under internal pressure
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 1
出版年 108
研究生(中文) 陳聖翔
研究生(英文) Sheng-Hsiang Chen
學號 N16061278
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-陳鐵城
中文關鍵字 矩形薄壁壓力容器  近似解析解方程式  有限元素法 
英文關鍵字 Rectangular pressure vessel  Compression machine  Finite element method  Approximate analytical equation 
中文摘要 非圓形斷面之薄壁壓力容器在空氣冷卻交換器、管道工程、材料壓縮箱體以及用於熱傳輸的特殊容器等領域具有廣泛的應用,而非圓形斷面之薄壁壓力容器目前的研究範圍大致著重於截面為矩形(rectangular)與長圓形(obround)的內壓結構(包含具強化與強化結構)。壓力容器在生產製造時,良好的結構設計可以提高材料成本效益,同時變形量與結構強度皆可符合限制需求,避免增加過多的重量與加工成本。廢料壓縮機的主壓縮箱為矩形薄壁壓力容器,薄壁容器於主油壓缸推進壓縮牧草時承載牧草形成之內壓,故引入加強肋構件讓矩形薄壁容器結構承載能力提升,避免結構產生過大的變形同時薄壁容器與加強肋之最大應力不超過降伏應力。本文利用有限元素軟體分析結構變形與應力分佈情形,其中主要的設計參數為:加強肋排列間距、形式、厚度以及高度等。本文利用有限元素軟體建立矩形薄壁壓力結構模型,然而有限元素模型建置與計算較耗時,故本文除了對矩形薄壁壓力容器在特定內壓條件下進行優化,同時推導出近似解析解方程式,提供在實際應用上較佳的分析效率又具足夠準確性之分析方法。本文中矩形薄壁壓力容器之設計準則為其最大變形量需小於特定限制條件且最大應力需小於材料(SS41鋼材)降伏應力,並利用ANSYS有限元素軟體建立分析模型,同時與近似解析解比較,從材料成本、強度、變形量等限制條件找出最適化設計方案,並由研究結果中提供矩形薄壁容器之設計依據。
英文摘要 The purpose of this study is to develop a simple and sufficiently accurate method to estimate deformation behavior of entire rectangular pressure vessel and investigate the influence of geometric parameters on ribs as well, which can be given as appropriate design suggestion in industry. For rectangular pressure vessels having reinforced members, the corner should be considered deformable. We take representative 2D model as analytical model and then derived the approximate analytical formulas. These formulas, including simplified and modified equations are suitable for different types of rib-reinforced vessels. The main difference between two equations is the shear rigidity. When the shear rigidity gets smaller, the results obtained by modified formula are more close to those by finite element method. In geometric parameters of rib, the height is more important than the width, so the height of rib should be major concerned in design. Moreover, rectangular vessels with radius corner make structure more compliant and significantly decrease the deflection than right corner one. It is evident that stress concentration phenomenon is located at the right angle corners, therefore it has to necessarily partly strengthen the corners. Another important thing observed in the results diagrams is that cross rib-reinforced type is the more effective and simpler reinforcing way to increase the ability of resisting deflection than ring rib-reinforced type.
論文目次 目錄
摘要 I
Extended Abstract II
誌謝 XI
目錄 XII
表目錄 XIV
圖目錄 XV
符號說明 XVIII
第一章 緒論 1
1.1 前言 1
1.2 研究目與動機 2
1.3 文獻回顧 3
第二章 壓力容器構造與負荷評估 6
2.1 壓力容器構造 6
2.2 負荷評估 8
第三章 分析方法 9
3.1 有限元素法 9
3.1.1 基本概念 9
3.1.2 發展背景 11
3.1.3 分析步驟 12
3.1.4 分析流程 13
3.2 近似解析解推導 21
3.2.1 矩形薄壁容器 21
3.2.2 圓角矩形薄壁容器 28
第四章 結果分析與討論 30
4.1 模型分析參數 30
4.2 收斂性分析 31
4.3 近似解析解驗證 33
4.3.1 矩形薄壁容器 33
4.3.2 具加強肋之矩形薄壁容器 35
4.3.3 圓角矩形薄壁容器 38
4.4 加強肋參數分析 41
4.4.1 環型加強肋 41 方形截面加強肋 42 加強肋高度對容器之影響 49
4.4.2 十字型加強肋 52
4.5 具加強肋之圓角矩形與直角矩形之比較 57
4.6 壓縮箱模型驗證 58
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 62
參考文獻 63
參考文獻 參考文獻
[1] A.G.M. Michell, “The Limits of Economy of Material in Frame Structures,” Philosophical Magazine, series 6, vol.8, pp. 589-597, 1904.
[2] H. Wagner, “Remark on airplane struts and girders under compressive and bending stresses,” Aeronautical Research Council, Report and Memoranda, no. 500, 1929.
[3] A. Zahorski, “Effects of Material Distribution on Strenth of Panels,” Journal of Aeronautical Science, vol. 11, no. 3, pp. 247-253, 1944.
[4] H. L. Cox and H. E. Smith, “Structures of Minimum Weight,” Aeronautical Research Council, Reports and Memoranda, no. 1923, 1945.
[5] J. Moe, “Stability of rib-reinforced cylindrical shells under lateral pressure,” International Association for Bridge and Structural Engineering, vol. 18, pp. 113-116, 1958.
[6] H. W. Zhang, N. Liu , J. Liu, W. G. Shao, and T. Xie, “Vibration resistance structure optimization design on special vehicle of fuel tank,” 2012.
[7] D. Y. Kwak, J. H. Jeong, J. S. Cheon, and Y. T. Im, “Optimal design of composite hood with reinforcing ribs through stiffness analysis,” Material Science, vol. 38, Issue 1-4, pp. 351-359, 1997.
[8] T. Adachi, A. Tomiyama, W. Araki, and A. Yamaji, “Energy absorption of a thin-walled cylinder with ribs subjected to axial impact,” International Journal of Impact Engineering, vol. 35, no. 2, pp. 65-79, 2008.
[9] A. G. Mamalis, E. D. Manolakos, S. Saigal, G. I. Viegelahn, and W. Johnson, “Extensional plastic collapse of thin-walled frusta as energy absorbers,” Internal Journal of Mechanical Sciences, vol. 28, pp. 219-229, 1986.
[10] A. G. Mamalis, G. L. Viegelahn, D. E. Manolakos, and W. Johnson, “Experimental investigation into the plastic collapse of steel thin-walled grooved tubes,” International Journal of Impact Engineering, vol. 4, pp. 117-126, 1986.
[11] Z. Zhang, “Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam,” Journal of Thinwalled Structures, vol. 47, no. 8-9, pp. 868-878, 2009.
[12] A. R. Kharat, S. J. Kadam, and S. G. Bhosale, “Study of different type reinforcement in cylindrical pressure vessel,” International Journal of Engineering Research & Technology, vol. 2, issue 10, 2013.
[13] S. M. Huybrechts, S. E. Hahn, and T. E. Meink, “Grid stiffened structures:a survey of fabrication, analysis and design methods,” 2009.
[14] G. A. Hazen, S. M. Sarganid, J. X. Zhao, and J. O. Hurd, “Bolted connections of rib-plate structures,” Transportation research record, Civil Engineering Department, Ohio University, 1989.
[15] H. Y. Lin and W. Fang, “Rib-reinforced micromachined beam and its applications,” Journal of Micromechanics and Microengineering, vol. 10, pp. 93-99, 2000.
[16] C. S. Krishnamoorthy and J. Munro, “Linear program for optimal design of reinforced concrete frames,” Proceedings of IABSE, vol. 3, pp. 119-141, 1973.
[17] H. Moharrami and D. E. Grierson, “Computer automated design of reinforced concrete frameworks,” Journal of Structural Engineering, vol. 119, pp. 2036-2058, 1993.
[18] C. C. Chen, C. A. Lu, and C. C. Lin, “Parametric study and design of rib-reinforced steel moment connections,” Engineering Structures, vol. 27, pp. 699-708, 2005.
[19] J. H. Faupel, “Pressure vessels of noncircular cross section (commentary on new rules for ASME code),” Journal of Pressure Vessel Technology, vol. 101, pp. 255-267, 1979.
[20] A. Carter, “The stress analysis of rectangular structures subjected tpo internal pressure,” Journal of Pressure Vessel Technology, vol.105, pp. 241-244, 1983
[21] Z. J. Zeng, J. J. Gao, and Q. S. Gu, “The stress analysis of rectangular pressure vessels having thin-walled reinforcing members,” International Journal of Pressure Vessels and Piping, vol. 30, issue 3, pp. 193-204, 1987.
[22] H. Zhou, G. Li, Y. Zhang, and L. Li, “Structure topology optimization design for compression box of horizontal preloading domestic waste Transfer Station,” Applied Mechanics and Materials, vols. 475-476, pp. 1382-1386, 2013.
[23] Z. Miao, J. W. Phillips, T. E. Grift, and S. K. Mathanker, “Measurement of mechanical compressive properties and densification energy requirement of miscanthus × giganteus and switchgrass,” BioEnergy Research, vol. 8, pp. 152-164, 2015.
[24] M.J. Turner, R.W. Clough, H.C. Martin, and L.J. Topp, “Stiffness and deflection analysis of complex structures,” Journal of the Aeronautical Sciences, vol. 23, no.9, pp. 805-823, 1956.
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-17起公開。

  • 如您有疑問,請聯絡圖書館