進階搜尋


 
系統識別號 U0026-1712201309355300
論文名稱(中文) 以有機金屬氣相磊晶法研製新穎高品質三族氮化物發光二極體之研究
論文名稱(英文) The Novel Investigation and Fabrication of High Quality III-Nitride-Based Light-Emitting Diodes Grown by Metal Organic Vapor Phase Epitaxy
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 1
出版年 103
研究生(中文) 顏政雄
研究生(英文) Cheng-Hsiung Yen
學號 l78981173
學位類別 博士
語文別 英文
論文頁數 114頁
口試委員 指導教授-賴韋志
共同指導教授-張守進
召集委員-許進恭
口試委員-李欣縈
口試委員-黃建璋
口試委員-郭浩中
口試委員-郭政煌
口試委員-李允立
口試委員-郭政達
中文關鍵字 發光二極體  有機金屬化學氣相沉積  電化學蝕刻  氮化鋁濺鍍 
英文關鍵字 GaN-based LEDs  MOVPE  electrochemical etching  sputtered AlN 
學科別分類
中文摘要 有兩種主要的方法來提高氮化鎵系列發光二極體的輸出效率,其中包含,1)內部量子效率和2)光萃取效率。因此,在本論文中,我們提出了一些解決方案,主要集中在改進氮化鎵系列材料的品質和光取出效率,以用於實現高效率的發光二極體。
本論文的主要重點可劃分為三個部分。首先,我們在藍光與紫外光發光二極體上,利用濺鍍機成長的氮化鋁成核層取代有機金屬化學氣相沉積機台所成長的成核層,對其光電特性進行探討。對於藍光發光二極體而言,利用濺鍍機成長的氮化鋁成核層取代有機金屬化學氣相沉積機台所成長的成核層,在XRD的量測中可以觀察到,以濺鍍法成長的氮化鋁成核層,其對氮化鎵(002)與(102)半高寬可以大幅度的減少,對(002)而言半高寬從318.0 降至 201.1 arcsec;而對(102)而言半高寬從412.5 降至 225.0 arcsec。此外,使用濺鍍法成長的氮化鋁成核層其發光二極體的-20 V反向漏電流比利用有機金屬化學氣相沉積機台所成長成核層的發光二極體降低了約3個數量級。且在-600 V的machine mode抗靜電測試上,使用有機金屬化學氣相沉積機台所成長成核層的發光二極體只有約40 %的通過率,而使用濺鍍法成長的氮化鋁成核層發光二極體則有超過60 %的通過率。另外,其20 A/cm^2的光輸出功率也較使用有機金屬化學氣相沉積機台所成長成核層的發光二極體高了約5.6 %。另一方面,對UV發光二極體而言,使用濺鍍法成長的氮化鋁成核層取代有機金屬化學氣相沉積機台所成長的氮化鎵成核層,也能提高UV發光二極體的材料品質。此外,其在20 mA的光輸出功率也較使用有機金屬化學氣相沉積機台所成長的氮化鎵成核層的發光二極體要來的高。在波長370 nm時其光輸出功率可提升約52 %。此外,使用濺鍍法成長的氮化鋁成核層取代有機金屬化學氣相沉積機台所成長的成核層對UV發光二極體而言,也能提升其光輸出可靠度。其光輸出可靠度可從原本168小時下降14 %左右的功率,提升到只下將約9 %。
在第二部分,我們使用InN/GaN切換成長手法長的InGaN量子井取代原本的連續成長手法,應用在綠光發光二極體上。使用這種成長方法,我們發現因為增加了原子的遷移率,而可實現高品質的InGaN量子井。除此之外,InN/GaN切換成長手法長的InGaN量子井其In成分與厚度也會受到InN與GaN的成長時間而影響到。而對電致發光(EL)而言,利用InN/GaN切換成長手法長的InGaN量子井其強度與半高寬也較連續成長的InGaN量子井要來的強與窄。而利用InN/GaN切換成長手法長的InGaN量子井會導致量子井厚度變厚,並且其光學特性也較連續成長的InGaN量子井要來的優異。由變溫PL可知,InN/GaN切換成長手法長的InGaN量子井其熱活化能約48 meV,而連續成長手法長的InGaN量子井約為25 meV。另外,由變溫PL所得到的σ值(此值與localization effects有關),InN/GaN切換成長手法長的厚InGaN量子井其值約為19 meV,而連續成長手法長的薄InGaN量子井則約為23 meV,由此可知厚InGaN量子井對載子的localization effects較為低。而對光輸出功率特性而言,使用InN/GaN切換成長手法長的厚InGaN量子井可較連續成長手法長的薄InGaN量子井在電流為20 A/cm^2 時高了約22 %。並且能改善漏電流與二極體特性。
在第三部分,我們利用電化學蝕刻n(-)-GaN模板在不同偏壓底下,發現此模板在MOVPE裡再成長發光二極體後,其原本為水平/樹枝狀的蝕刻結構會轉換成橢圓形的孔洞,此孔洞大小與初始的水平/樹枝狀結構大小有關。除此之外,在此電化學蝕刻n(-)-GaN模板的發光二極體,其順向偏壓並不會受到影響。而對光輸出功率而言,使用此電化學蝕刻n(-)-GaN模板的發光二極體,在20 A/cm^2的電流底下,最高可較常規發光二極體高出約50 %的光輸出效率。
英文摘要 There are two main approaches to enhance output efficiency of GaN-based LEDs, 1) internal quantum efficiency (IQE) and light extraction efficiency (LEE). Therefore, in this dissertation, we propose some solutions which were focused on improvement of material quality and light extraction efficiency for realizing highly efficient GaN-based LEDs.
The main focus of this dissertation can be dividing into three parts. First, we demonstrate GaN-based blue and UV LEDs with ex-situ sputtered AlN nucleation layers. The effects of the sputtered AlN nucleation layer on the electrical and optical properties of the GaN-based blue and UV LEDs are discussed. For the blue LEDs, replacing the in-situ AlN nucleation layer with the sputtered AlN nucleation layer reduced the (002) and (102) X-ray rocking curve widths of the GaN layer from 318.0 to 201.1 and 412.5 to 225.0 arcsec, respectively. The –20 V reverse leakage current of the LEDs with the sputtered AlN nucleation layer is about 3 orders less than that of the LEDs with the in-situ AlN nucleation layer. In addition, the LEDs with sputtered AlN nucleation layer could sustain more than 60% passing yield on the ESD test of under a –600 V machine mode, whereas the LEDs with the in-situ AlN nucleation layer sustained less than 40% passing yield. Moreover, the 20-A/cm^2 output power of the LEDs with the sputtered AlN nucleation layer also improved by approximately 5.6%compared with that of the LEDs with the in-situ AlN nucleation layer. Furthermore, for the UV LEDs, the introduction of the ex-situ sputtered AlN nucleation layer also improved the crystal quality of the GaN and the n-AlGaN layer of the GaN-based UV LEDs. Hence, the 20-mA output power of UV LEDs with ex-situ AlN nucleation layers is higher than that of UV LEDs with GaN nucleation layers. In addition, the enhanced power output of UV LEDs with ex-situ AlN nucleation could reach around 52% in magnitude at peak emission wavelengths of 370 nm compared with power outputs of UV LEDs with GaN nucleation layers. Furthermore, UV LEDs with ex-situ AlN nucleation show improved reliability. The UV LEDs with ex-situ AlN nucleation layer revealed a power output drop of around 9% within 168 hours, which is less than the around 14% power drop of UV LEDs with GaN nucleation layer.
The second part, we report the use of digital InN/GaN growth structure to replace the thick InGaN well layers in the InGaN/GaN multiquantum well (MQW) and the fabrication of GaN-based green light-emitting diodes (LEDs). Using this method, it was found that we could achieve InGaN “well layers” with high crystal quality due to the enhanced migration of adatoms during the growth. It was also found that indium composition in the InGaN “well layers” and the thickness of the InGaN “well layers” both depend strongly on the growth time of InN and GaN. It was also found that we could achieve stronger electroluminescence (EL) intensities with narrower full-width-half-maxima (FWHMs) from the LEDs with digital InN/GaN growth InGaN “well layers”. Thick InGaN wells with digital InN/GaN growth growth exhibit superior optical properties than conventional growth thin InGaN wells. The activation energy of thick InGaN wells by digital InN/GaN growth (48 meV) from temperature-dependent integrated photoluminescence intensity is larger than that of conventional growth thin InGaN wells (25 meV). Moreover, thick InGaN wells with digital InN/GaN growth exhibit less σ value (degree of localization effects) of 19 meV than conventional growth thin InGaN wells (23 meV). The 20 A/cm^2 output power improvement of light-emitting diodes (LEDs) with digital InN/GaN growth thick InGaN wells is approximately 22% as compared to that of green LEDs with conventional thin InGaN wells. Furthermore, it was found that we could achieve better ideality factors and smaller reverse leakage currents from the proposed devices.
In the third part, we report the fabrication of GaN-based blue LEDs with embedded reshaped ellipsoidal voids by using an electrochemically etched n(-)-GaN template. It was found that the size of the reshaped ellipsoidal voids is strongly related to the initial diameter of the horizontal/tree-branch-like pores in the n(-)-GaN and the bias of electrochemical etching. It was also found that the forward voltage of the LEDs on such templates did not increase drastically. Furthermore, it was found that light output power at 20 A/cm^2 is 50% higher for such LEDs, as compared to conventional LEDs.
論文目次 摘要(In Chinese)...........................................I
Abstrct(In English).......................................IV
致謝.....................................................VII
Contents................................................VIII
Table Captions............................................XI
Figure Captions...........................................XI

Chapter 1 Introduction...............................1
1.1 Background of GaN–based LEDs.......................1
1.2 Motivation and overview of this dissertation.......3
Reference.................................................10
Chapter 2 Fabrication and Measurement Apparatus.....14
2.1 Metal Organic Vapor Phase Epitaxy (MOVPE).........14
2.2 Radio Frequency (RF) Sputtering System............15
2.3 X-ray Diffraction (XRD) System....................16
2.3.1 The average period length of multiple structure...16
2.3.2 In content of InxGa1-xN determined by XRD θ-2θ scan......................................................17
2.4 Photoluminescence System (PL).....................18
2.5 Electricluminescence (EL).........................19
Reference.................................................28
Chapter 3 Growth and properties of GaN-based light emitting diodes on patterned sapphire substrate with sputtered AlN nucleation..................................29
3.1 The study of GaN-based blue light emitting diodes with with sputtered AlN nucleation........................29
3.1.1 Motivation........................................29
3.1.2 Experiment........................................30
3.1.3 Result and discussion.............................31
3.1.4 Conclusion........................................35
3.2 The study of GaN-based Ultraviolet light emitting diodes with with sputtered AlN nucleation.................36
3.2.1 Motivation........................................36
3.2.2 Experiment........................................38
3.2.3 Result and discussion.............................40
3.2.4 Conclusion........................................43
References................................................53
Chapter 4 GaN-Based Green-Light-Emitting Diodes with Digital InN/GaN Growth InGaN Wells........................59
4.1 The effects of GaN-based Green light emitting diodes with varied growth time of the InN and GaN of the digital InN/GaN growth InGaN wells........................59
4.1.1 Motivation........................................59
4.1.2 Experiment........................................61
4.1.3 Results and discussion............................63
4.2 Optoelectrical characteristics of GaN-based Green light emitting diodes with digital InN/GaN growth InGaN Wells.....................................................67
4.2.1 Experiment........................................67
4.2.2 Results and discussion............................69
4.3 Summary...........................................75
References................................................89
Chapter 5 GaN-based light-emitting diodes on electrochemically etched n(-)-GaN template..................................................95
5.1 Motivation........................................95
5.2 Experiment........................................96
5.3 Result and discussion.............................97
5.4 Conclusion........................................99
References...............................................108
Chapter 6 Conclusion and Future Work...............111
參考文獻 Chapter 1 references
[1] S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes," Appl. Phys. Lett., vol. 64, pp. 1687-1689, Mar 28 1994.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, "InGaN-GaN multiquantum-well blue and green light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278-283, Mar-Apr 2002.
[3] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, "400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 744-748, Jul-Aug 2002.
[4] E. F. Schubert, Light-Emitting Diodes, Second ed. Cambridge, U.K.: Cambridge Univ. Press, 2006, pp. 211–213.
[5] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Muka, "Ultra-high efficiency white light emitting diodes," Jpn. J. Appl. Phys., vol. 45, pp. L1084-L1086, Oct 2006.
[6] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano and T. Mukai, "White light emitting diodes with super-high luminous efficacy," J. Phys. D: Appl. Phys., vol. 43, pp. 354002, Aug 2010.
[7] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a GaN−AlxGa1−xN heterojunction," Appl. Phys. Lett., vol. 63, no. 9, pp. 1214–1215, Aug. 1993.
[8] Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, "High Al-content AlGaN/GaN MODFETs for ultrahigh performance," IEEE Electron Device Lett., vol. 19, no. 2, pp. 50–53, Feb. 1998.
[9] W. Lu, J. W. Yang, M. A. Khan, and I. Adesida, "AlGaN/GaN HEMTs on SiC with over 100 GHz and low microwave noise," IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 581–585, Mar. 2001.
[10] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, "High-power microwave GaN/AlGaN HEMT's on semi-insulating silicon carbide substrates," IEEE Electron Device Lett., vol. 20, no. 4, pp. 161–163, Apr. 1999.
[11] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Appl. Phys. Lett., vol. 48, pp. 353–355, Feb. 1986.
[12] D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, "Defect donor and acceptor in GaN," Phys. Rev. Lett., vol. 79, no. 12, pp. 2273–2276, Sep. 1997.
[13] J. Neugebauer, and C. G. Van de Walle, "Hydrogen in GaN: Novel aspects of a common impurity," Phys. Rev. Lett., vol. 75, pp. 4452–4455, 1995.
[14] F. A. Reboredo, and S. T. Pantelides, "Novel defect complex and their role in the p-type doping of GaN," Phys. Rev. Lett., vol. 82, pp. 1887–1890, 1994.
[15] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)," Jpn. J. Appl. Phys., vol. 28, pp. L2112–L2114, 1989.
[16] S. Nakamura, "GaN growth using GaN buffer layer," Jpn. J. Appl. Phys., vol. 30, pp. L1705–L1707, 1991.
[17] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Jpn. J. Appl. Phys., vol. 31, pp. L139 –L142, 1992.
[18] M. Feneberg and K. Thonke, "Polarization fields of III-nitrides grown in different crystal orientations," J. Phys. Condens. Matter., vol. 19, p. 403201, 2007.
[19] T. Paskova, D. A. Hanser, and K. R. Evans, "GaN substrates for III-nitride devices," Proc. IEEE, vol. 98, no. 7, pp. 1324–1338, Jul. 2010.
[20] U. T. Schwarz, and M. Kneissl, "Nitride emitters go nonpolar," Phys. Stat. Sol., vol. 1, no. 3, pp. A44–A46, Apr. 2007.
[21] E. F. Schubert, Light-Emitting Diodes, Second ed. Cambridge, U.K.: Cambridge Univ. Press, 2006, pp. 150–160.
[22] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren, J. C. Zolper, and L. F. Lester, "High density plasma-induced etch damage in GaN," Proc. Mat. Res. Soc. Symp., 1999, vol. 573, pp. 271–273.
[23] D. S. Jiang, D. G. Zhao, and H. Yang, "Optical analysis of dislocation-related physical processes in GaN-based epilayers," Phys. Stat. Sol (b), vol. 244, no. 8, pp. 2878–2891, Jun. 2007.
[24] P. Vennegues, B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, "Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods," J. Appl. Phys., vol. 87, pp. 4175–4181, May 1 2000.
[25] M. T. Wang, K. Y. Liao, and Y. L. Li, "Growth mechanism and strain variation of GaN material grown on patterned sapphire substrates with various pattern designs," IEEE Photon. Technol. Lett., vol. 23, no. 14, pp. 962–964, Jul. 2011.
[26] J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, "Research challenges to ultra-efficient inorganic solid-state lighting," Laser & Photon. Rev., vol. 1, no. 4, pp. 307–333, 2007.
[27] H. C. Lin, R. S. Lin, and J. I. Chyi, "Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment," Appl. Phys. Lett., vol. 92, pp. 161113-1–161113-3, Apr. 2008.
[28] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, "Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density," Appl. Phys. Lett., vol. 79, pp. 215–217, May. 2001.
[29] I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, "Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films," Appl. Phys. Lett., vol. 73, pp. 1634–1636, Jul. 1998.
[30] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, "Pit formation in GaInN quantum wells," Appl. Phys. Lett., vol. 72, pp. 710–712, Dec. 1998.
[31] C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu, and C.C. Lin, "Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface," Mater. Sci. Eng. B, vol. 112, pp. 10–13, May 2004.
[32] E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park, "Air-voids embedded high efficiency InGaN-light emitting diode," Appl. Phys. Lett., vol. 93, no. 19, pp. 191103-1–191103-3, Nov. 2008.
[33] H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, "Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes," Appl. Phys. Lett., vol. 95, no. 22, pp. 221110-1–221110-3, Nov. 2009.
[34] W. C. Lai, Y. Y. Yang, L. C. Peng, S. W. Yang, Y. R. Lin, and J. K. Sheu, "GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures," Appl. Phys. Lett., vol. 97, no. 8, pp. 081103-1–081103-3, Aug. 2010.

Chapter 2 references
[1] H. M. Manasevit, and W. I. Simpson, "Single‐Crystal Silicon on a Sapphire Substrate," J. Appl. Phys. Lett., vol. 35, pp. 1349–1353, 1964.
[2] H. M. Manasevit, "Single-Crystal Gallium Arsenide on Insulating Substrates," Appl. Phys. Lett., vol. 12, pp. 156–159, 1968.
[3] H. P. Maruska, and J. J. Tietjen, "The preparation and properties of vapor‐deposited single‐crystal‐line GaN," Appl. Phys. Lett., vol. 15, pp. 327–329, 1969.
[4] R.K. Watts, in J.L. Vossen and W. Kern, eds., Thin Flim Processes, Academic, New York, 1978, pp. 131–174.
[5] S. M. Sze, VLSI Technology, pp. 387, 1988.
[6] L. T. Romano, B. S. Krusor, M. D. McCluskey, D. P. Bour and K. Nauka, "Structural and optical properties of pseudomorphic InxGa1-xN alloys," Appl. Phys. Lett., vol.73, pp.1757–1759, 1998.
[7] H. B. Bebb and E. W. Williams, "Photoliminescence I: Theory," in semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.) Academic Press, New York, 8, 181-320, 1972; E.W. Williams and H. B. Bebb, "Photoluminescence II: Gallium Arsenide," ibid. 321–329.
[8] E. F. Schubert, Light-Emitting Diodes, Second ed. Cambridge, U.K.: Cambridge Univ. Press, 2006, pp. 87–88.

Chapter 3 references
[1] S. Nakamura, T. Mukai, and M. Senoh, "Candela-Class High-Brightness Ingan/Algan Double-Heterostructure Blue-Light-Emitting Diodes," Appl. Phys. Lett., vol. 64, pp. 1687–1689, Mar 1994.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, "InGaN-GaN multiquantum-well blue and green light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278–283, Mar-Apr 2002.
[3] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, "400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 744–748, Jul-Aug 2002.
[4] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Muka, "Ultra-high efficiency white light emitting diodes," Jpn. J. Appl. Phys., vol. 45, pp. L1084–L1086, Oct 2006.
[5] F. A. Pounce, D. P Bour, "Nitride-based semiconductors for blue and green light-emitting devices," Nature, vol. 386, pp. 351–359, Mar 1997.
[6] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, S. P. Denbaars, J. S. Speck, "Dislocation generation in GaN heteroepitaxy," J. Crystal Growth, vol. 189, pp. 231–243, Jun 1998.
[7] S. W. Lee, J. S. Ha, H. J. Lee, H. Goto, T. Hanada, T. Goto, K. Fujii, M. W. Cho, and T. Yao, "Lattice strain in bulk GaN epilayers grown on CrN/sapphire template," Appl. Phys. Lett., vol. 94, pp. 082105-1–082105-3, Feb 2009.
[8] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, "Nitride-based light-emitting diodes with p-AlInGaN surface layers," IEEE Electron. Dev. Lett., vol. 52, pp. 2346–2349, Oct 2005.
[9] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, "Nitride-based LEDs with an SPS Tunneling contact layer and an ITO transparent contact," IEEE Photon. Technol. Lett., vol. 16, pp. 1002–1004, Apr 2004.
[10] B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolenk, B. P. Keller, S. P. Denbaars, and J. S. Speck, "Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films," Appl. Phys. Lett., vol. 68, pp. 643–645, Jan 1996.
[11] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, "Raman-Scattering and X-Ray Absorption Spectroscopy in Gallium Nitride under High-Pressure," Phys. Rev. B, vol. 45, pp. 83–89, Jan 1992.
[12] C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, "Strain-related phenomena in GaN thin films, " Phys. Rev. B, vol. 54, pp. 17745–17753, Dec 1996.
[13] Jiuru Xu, Martin F. Schubert, Di Zhu, Jaehee Cho, E. Fred Schubert, Hyunwook Shim, and Cheolsoo Sone, "Effects of polarization-field tuning in GaInN light-emitting diodes," Appl. Phys. Lett., vol. 99, pp. 041105-1–041105-3, Jul 2011.
[14] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett., vol. 91, pp. 141101-1–141101-3, Oct 2007.
[15] N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, "Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2," Appl. Phys. Lett., vol. 91, pp. 243506-1–243506-3, Dec 2007.
[16] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, "High Dislocation Densities in High-Efficiency Gan-Based Light-Emitting-Diodes," Appl. Phys. Lett., vol. 66, pp. 1249–1251, Mar 1995.
[17] T. Wang, Y. H. Liu, Y. B. Lee, Y. Izumi, J. P. Ao, J. Bai, H. D. Li, and S. Sakai, "Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes," J. Crystal Growth, vol. 235, pp. 177–182, Feb 2002.
[18] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K. W. Fullmer, and W. G. Breiland, "Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence," Appl. Phys. Lett., vol. 81, pp. 1940–1942, Sep 2002.
[19] D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Semipolar (20(2)over-bar(1)over-bar) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting," J. Display Technol., vol. 9, pp. 190–198, Apr 2013.
[20] R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semicond. Sci. Technol., vol. 27, pp. 024001-1–024001-14, Feb 2012.
[21] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express, vol. 19, pp. A991–A1007, Jul 2011.
[22] J. Zhang, and N. Tansu, "Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates," IEEE Photon. J., vol. 5, 2600111-1–2600111-11, Apr 2013.
[23] G. Y. Liu, J. Zhang, C. K. Tan, and N. Tansu, "Efficiency-Droop Suppression by Using Large-Bandgap AlGaInN Thin Barrier Layers in InGaN Quantum-Well Light-Emitting Diodes," IEEE Photon. J., vol. 5, 2201011-1–2201011-11, Apr 2013.
[24] H. Zhao, G. Liu, J. Zhang, R. A. Arif, and N. Tansu, "Analysis of Internal Quantum Efficiency and Current Injection Efficiency in III-Nitride Light-Emitting Diodes," J. Display Technol., vol. 9, pp. 212–225, Apr 2013.
[25] S. Choi, M. H. Ji, J. Kim, H. J. Kim, M. M. Satter, P. D. Yoder, J. H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, "Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers," Appl. Phys. Lett., vol. 101, pp. 161110-1–161110-5, Oct 2012.
[26] C. K. Tan, J. Zhang, X. H. Li, G. Y. Liu, B. O. Tayo, and N. Tansu, " First-Principle Electronic Properties of Dilute-As GaNAs Alloy for Visible Light Emitters," J. Display Technol., vol. 9, pp. 272–279, Apr 2013.
[27] P. Vennegues, B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, "Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods," J. Appl. Phys., vol. 87, pp. 4175–4181, May 2000.
[28] B. Beaumont, P. Vennegues, and P. Gibart, "Epitaxial lateral overgrowth of GaN," Phys. Stat. Sol. (b), vol. 227, pp. 1–43, Sep 2001.
[29] P. Gibart, "Metal organic vapour phase epitaxy of GaN and lateral overgrowth," Rep. Prog. Phys., vol. 67, pp. 667–715, May 2004.
[30] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, "Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)," J. Crys. Growth, vol. 221, pp. 316–326, Dec 2000.
[31] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, "Low-dislocation-density GaN from a single growth on a textured substrate," Appl. Phys. Lett., vol. 77, pp. 3233–3235, Nov 2000.
[32] D. M. Follstaedt, P. P. Provencio, N. A. Missert, C. C. Mitchell, D. D. Koleske, A. A. Allerman, and C. I. H. Ashby, "Minimizing threading dislocations by redirection during cantilever epitaxial growth of GaN," Appl. Phys. Lett., vol. 81, pp. 2758–2760, Oct 2002.
[33] Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, "Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode," IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1066–1072, Jul-Aug 2009.
[34] Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Crys. Growth, vol. 312, pp. 1311–1315, Apr 2010.
[35] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett., vol. 98, pp. 151102-1–151102-3, Apr 2011.
[36] W. Cao, J. M. Biser, Y. K. Ee, X. H. Li, N. Tansu, H. M. Chan, et al., "Dislocation structure of GaN films grown on planar and nano-patterned sapphire," J. Appl. Phys., vol. 110, pp. 053505-1–053505-4, Sep 2011.
[37] K. Lorenz, M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan, "Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition," Appl. Phys. Lett., vol. 77, pp. 3391–3393, Nov 2000.
[38] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, and K. Oki, "Growth-mechanism of GaN grown on sapphire with AlN buffer layer by MOVPE," J. Crys. Growth, vol. 115, pp. 628–633, Dec 1991.
[39] M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan, "Influence of AlN nucleation layer growth conditions on quality of GaN layers deposited on (0001) sapphire," J. Crys. Growth, vol. 240, pp. 347–354, May 2002.
[40] H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang, and S. W. S. Chi, "Effects of lens shape on GaN grown on microlens patterned sapphire substrates by metallorganic chemical vapor deposition," J. Electrochem. Soc., vol. 157, pp. H304–H307, Jan 2010.
[41] C. H. Yen, W. C. Lai, Y. Y. Yang, C. K. Wang, T. K. Ko, S. J. Hon, and S. J. Chang, "GaN-based light-emitting diode with sputtered AlN nucleation layer," IEEE Photon. Technol. Lett., vol. 24, pp. 294–296, Feb 2012.
[42] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K. W. Fullmer, and W. G. Breiland, "Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence," Appl. Phys. Lett., vol. 81, pp. 1940–1942, July 2002.
[43] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, "A review on the physical mechanisms that limit the reliability of GaN-based LEDs," Ieee T. Electron. Dev., vol. 57, pp. 108–118, Jan 2010.
[44] S. Tomiya, T. Hino, S. Goto, M. Takeya, and M. Ikeda, "Dislocation related issues in the degradation of GaN-based laser diodes," IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 1277–1286, Nov-Dec 2004.
[45] S. N. Lee, H. S. Paek, J. K. Son, H. Kim, K. K. Kim, K. H. Ha, O. H. Nam, and Y. Park, "Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices," J. Electroceram., vol. 23, pp. 406–409, Oct 2009.

Chapter 4 references
[1] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Appl. Phys. Lett., vol. 64, pp. 1687–1689, Jan 1994.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, "InGaN-GaN multiquantum-well blue and green light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278–283, Aug 2002.
[3] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, "400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes," IEEE J. Sel. Top. Quantum Electron, vol. 8, pp. 744–748, Dec 2002.
[4] S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, "High-Brightness InGaN Blue, Green and Yellow Light-Emitting-Diodes with Quantum-Well Structures," Jpn. J. Appl. Phys., vol. 34, pp. L797–L799, Jul 1995.
[5] T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Nau, H. Tamaki, Y. Murazaki, and M. Kameshima, "Recent progress of nitride-based light emitting devices," Phys. Status Solidi A, vol. 200, pp. 52–57, Nov 2003.
[6] J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, "GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer," Appl. Phys. Lett., vol. 88, pp. 013501-1–013501-3, Jan 2006.
[7] Y. L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, "Low-resistance ohmic contacts to p-type GaN," Appl. Phys. Lett., vol. 76, pp. 2728–2730, May 2000.
[8] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou, G. Harbers, and M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," IEEE J. Disp. Technol., vol. 3, pp. 160–175, Jun 2007.
[9] J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller-Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, "Research challenges to ultra-efficient inorganic solid-state lighting," Laser Photonics Rev., vol. 1(4), pp. 307–333 ,Dec 2007.
[10] X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, "Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells," Appl. Phys. Lett., vol. 72, pp. 692–694, Feb1998.
[11] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, "Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density," Appl. Phys. Lett., vol. 79, pp. 215–217, Jul 2001.
[12] N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, "Chemical mapping and formation of V-defects in InGaN multiple quantum wells," Appl. Phys. Lett., vol. 77, pp. 1274–1276, Aug 2000.
[13] C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, "Quantum shift of band-edge stimulated emission in InGaN-GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett., Vol. 70, pp. 2978–2980, Jun 1997.
[14] I. H. Kim, H. S. Park, Y. J. Park, and T. Kim, "Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films," Appl. Phys. Lett., vol. 73, pp. 1634–1636, Sep 1998.
[15] Y. Chen, T. Takeuchi, H. Amino, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, "Pit formation in GaInN quantum wells," Appl. Phys. Lett., vol. 72, pp. 710–712, Feb 1998.
[16] S. J. Leem, M. H. Kim, J. Shin, Y. Choi, and J. Jeong, "The effects of in flow during growth interruption on the optical properties of InGaN multiple quantum wells grown by low pressure metalorganic chemical vapor deposition," Jpn. J. Appl. Phys., vol. 40, pp. L371–L373, Apr 2001.
[17] M. S. Kumar, J. Y. Park, Y. S. Lee, S. J. Chung, C. H. Hong, and E. K. Suh, "Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by in preflow for InGaN well growth," Jpn. J. Appl. Phys., vol. 47, pp. 839–842, Feb 2008.
[18] H. C. Lin, R. S. Lin, and J. I. Chyi, "Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment," Appl. Phys. Lett., vol. 92, pp. 161113-1–161113-3, Apr 2008.
[19] Y. J. Lee, Y. C. Chen, C. J. Lee, C. M. Cheng, S. W. Chen, and T. C. Lu, "Stable Temperature Characteristics and Suppression of Efficiency Droop in InGaN Green Light-Emitting Diodes Using Pre-TMIn Flow Treatment," IEEE Photonics Technol. Lett., vol. 22, pp. 1279–1281, Sep 2010.
[20] S. W. Feng, C. Y. Tsai, H. C. Wang, H. C. Lin, and J. I. Chyi, "Optical properties of InGaN/GaN multiple quantum wells with trimethylindium treatment during growth interruption," J. Cryst. Growth, vol. 325, pp. 41–45, Jun 2011.
[21] M. C. Johnsona, S. L. Konseka, A. Zettla, E.D. Bourret-Courchesne, "Nucleation and growth of InN thin films using conventional and pulsed MOVPE," J. Cryst. Growth, vol 272, pp. 400–406, Dec 2004.
[22] M. Jamil, H. Zhao, J. B. Higgins, and N. Tansu, "Influence of growth temperature and V/III ratio on the optical characteristics of narrow band gap (0.77 eV) InN grown on GaN/sapphire using pulsed MOVPE," J. Cryst. Growth, vol. 310, pp. 4947–4953, Nov 2008.
[23] M. Jamil, H. Zhao, J. B. Higgins, and N. Tansu, "MOVPE and photoluminescence of narrow band gap (0.77 eV) InN on GaN/sapphire by pulsed growth mode," Phys. Status Solidi A, vol. 25, pp. 2886–2891, Dec 2008.
[24] C. Y. Chang, S. J. Chang, C. H. Liu, S. G. Li and T. K. Lin, "GaN-based LEDs with double strain releasing MQWs and Si delta-doping layers," IEEE Photon. Technol. Lett., vol. 24, pp. 1809–1811, Oct 2012.
[25] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, "Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact," IEEE Photon. Technol. Lett., vol. 16, pp. 1002–1004, Apr 2004.
[26] Y. H. Cho, F. Fedler, R. J. Hauenstein, G. H. Park, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, "High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: Influence of Si doping concentration," J. Appl. Phys., vol. 85, pp. 3006–3008, Mar 1999.
[27] J. Abell, and T. D. Moustakas, "The role of dislocations as nonradiative recombination centers in InGaN quantum wells," Appl. Phys. Lett., vol. 92, pp. 091901-1–091901-3, Mar 2008.
[28] G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Götz, and F. Steranka, "Performance of high-power III-nitride light emitting diodes," Phys. Status Solidi A, vol. 205, pp. 1086–1092, May 2008.
[29] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica Status Solidi (RRL), vol. 34, pp. 149–154, 1967.
[30] L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B, vol. 30, pp. 1979–1991, Aug 1984.
[31] P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, "Blue temperature-induced shift and band-tail emission in InGaN-based light sources," Appl. Phys. Lett., vol. 71, pp. 569–571, Aug 1997.
[32] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, "Spontaneous emission of localized excitons in InGaN single and multiquantum well structures," Appl. Phys. Lett., vol. 69, pp. 4188–4190, Dec 1996.
[33] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, "Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm," Appl. Phys. Lett., vol. 70, pp. 981–983, Feb 1997.
[34] Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, "Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate," IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1137–1143, Apr 2009.
[35] M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, "Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD," Mater. Chem. Phys., vol. 113, pp. 192–195, Jan 2009.
[36] W. Liu, S. J. Chua, X. H. Zhang, and J. Zhang, "Effect of high temperature and interface treatments on photoluminescence from InGaN/GaN multiple quantum wells with green light emissions," Appl. Phys. Lett., vol. 83, pp. 914–916, Aug 2003.
[37] G. Pozina, J. P. Bergman, B. Monemar, S. Yamaguchi, H. Amano, and I. Akasaki, "Optical spectroscopy of GaN grown by metalorganic vapor phase epitaxy using indium surfactant," Appl. Phys. Lett., vol. 76, pp. 3388–3390, Jun 2000.
[38] T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi, K. Nishino, and S. Sakai, "Role of Dislocation in InGaN Phase Separation," Jpn. J. Appl. Phys., Part 2, vol. 37, pp. L1195–L1198, Oct 1998.
[39] S. Yamaguchi, M. Kariya, S. Nitta, H. Amano, and I. Akasaki, "The Effect of Isoelectronic In-Doping on the Structural and Optical Properties of (Al)GaN Grown by Metalorganic Vapor Phase Epitaxy," Jpn. J. Appl. Phys., vol. 39, pp. 2385–2388, Apr 2000.
[40] J. E. Northrup and C. G. Van de Walle, "Indium versus hydrogen-terminated GaN(0001) surfaces: Surfactant effect of indium in a chemical vapor deposition environment," Appl. Phys. Lett., vol. 84, pp. 4322–4324, May 2004.
[41] A. Yoshikawa, S. B. Che, W. Yamaguchi, H. Saito, X. Q. Wang, Y. Ishitani, and E. S. Hwang, "Proposal and achievement of novel structure multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix," Appl. Phys. Lett., vol. 90, pp. 073101-1–073101-3, Feb 2007.

Chapter 5 references
[1] S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness InGan/AlGaN double-heterostructure blue-light-emitting diodes," Appl. Phys. Lett., vol. 64, pp. 1687–1689, Mar 1994.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, "InGaN-GaN multiquantum-well blue and green light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 278–283, Mar-Apr 2002.
[3] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, "400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 744–748, Jul-Aug 2002.
[4] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Muka, "Ultra-high efficiency white light emitting diodes," Jpn. J. Appl. Phys., vol. 45, pp. L1084–L1086, Oct 2006.
[5] D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Semipolar (20(2)over-bar(1)over-bar) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting," J. Display Technol., vol. 9, no. 4, pp. 190–198, Apr 2013.
[6] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express, vol. 19, pp. A991–A1007, Jul 2011.
[7] J. Zhang, and N. Tansu, "Optical Gain and Laser Characteristics of InGaN Quantum Wells on Ternary InGaN Substrates," IEEE Photon. J., vol. 5, pp. 2600111-1–2600111-1, Apr 2013.
[8] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. A. Tsai, J. K. Sheu, and C. T. Lee, "Nitride-based LEDs with 800°C grown p-AllnGaN-GaN double-cap layers," IEEE Photon. Technol. Lett., vol. 16, pp. 1447–1449, Jun 2004.
[9] Y. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, "High brightness GaN-based light-emitting diodes," J. Display Technol., vol 3, pp. 118–125, Jun 2007.
[10] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, "InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode," Jpn. J. Appl. Phys., vol. 41, L1431–L1433, Dec 2002.
[11] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, "Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates," IEEE Photon. Technol. Lett., vol. 17, pp. 288–290, Feb 2005.
[12] Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, "Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode," IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1066–1072, Jul-Aug 2009.
[13] Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," J. Crys. Growth, vol. 312, pp. 1311–1315, Apr 2010.
[14] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Appl. Phys. Lett., vol. 98, pp. 151102-1–151102-3, Apr 2011.
[15] E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park, "Air-voids embedded high efficiency InGaN-light emitting diode," Appl. Phys. Lett., vol. 93, pp. 191103-1–191103-3, Nov 2008.
[16] H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, "Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes," Appl. Phys. Lett., vol. 95, pp. 221110-1–221110-3, Nov 2009.
[17] W. C. Lai, Y. Y. Yang, L. C. Peng, S. W. Yang, Y. R. Lin, and J. K. Sheu, "GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures," Appl. Phys. Lett., vol. 97, pp. 081103-1–081103-3, Aug 2010.
[18] C. D. Yerino, Y. Zhang, B. Leung, M. L. Lee, T. C. Hsu, C. K. Wang, W. C. Peng, and J. Han, "Shape transformation of nanoporous GaN by annealing: From buried cavities to nanomembranes," Appl. Phys. Lett., vol. 98, pp. 251910-1–251910-3, Jun 2011.
[19] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, "Nitride-based light-emitting diodes with p-AlInGaN surface layers," IEEE Electron. Dev. Lett., vol. 52, pp. 2346–2349, Oct 2005.
[20] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, "Nitride-based LEDs with an SPS Tunneling contact layer and an ITO transparent contact," IEEE Photon. Technol. Lett., vol. 16, pp. 1002–1004, Apr 2004.
[21] D. Chen, H. Xiao, and J. Han, "Nanopores in GaN by electrochemical anodization in hydrofluoric acid: Formation and mechanism," J. Appl. Phys., vol. 112, pp. 064303-1–064303-5, Sep 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw