進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1712201211233600
論文名稱(中文) 奈米粒子修飾石墨烯之表面增強拉曼光譜
論文名稱(英文) Surface-enhanced Raman scattering of graphene modified by nanoparticles
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 1
出版年 101
研究生(中文) 黃政文
研究生(英文) Cheng-Wen Huang
電子信箱 chengwen620@gmail.com
學號 l78981204
學位類別 博士
語文別 英文
論文頁數 99頁
口試委員 口試委員-曾永華
召集委員-蔡錦俊
口試委員-藍永強
口試委員-林泰生
口試委員-周哲仲
指導教授-崔祥辰
中文關鍵字 拉曼  奈米粒子  應力 
英文關鍵字 Raman  nanoparticles  strain 
學科別分類
中文摘要 近幾年來,石墨烯,一種只有單層碳原子厚度的材料,已經逐漸的獲得重視,並有望成為下一個世代電子元件的最佳材料。為了能更加瞭解他獨有的特性,我們發展了數種良好的技術,如偏振拉曼光譜儀、螢光淬滅…等技術去了解石墨烯的獨有特性並使它在電學或光學的原件上能更加應用自如。在我們的研究中,藉由我們的分析,應力在石墨烯表面上的方向與大小是可以被計算,而這樣的研究將有利於我們在製作石墨烯的過程中所造成的應力而提供良好的視野,並藉此來判斷石墨烯製作的品質。除此之外,因為石墨烯的拉曼訊號十分微弱,我們利用表面電漿增強的技術來增強其訊號並研究基板與滲雜對石墨烯的影響,在我們的研究中,我們針對了不同層數石墨烯上的金屬奈米粒子進行粒徑分析,而這樣的粒徑分析也是表面電漿增強效應的其中一個影響因子。接著,我們藉由表面電漿增強效應去研究了雙層石墨烯的增強效應並利用其拉曼訊號與表面電漿增強拉曼訊號去計算出增強因子,因為雙層石墨烯的電子結構可以被橫向電場所調控進而被應用在場效電晶體上,因此我們研究中,也探討了基板上的電荷滲雜與銀奈米粒子蒸鍍至基板的滲雜效應。最後,我們利用金屬奈米粒子作為淬滅的分子來抑制羅丹寧在石墨烯與氫化石墨烯上的螢光訊號。而根據上述的研究,對於石墨烯應用在電子或光學上的原件的特性都將有更仔細的研究與幫助。
英文摘要 Graphene, one atom thickness of carbons, has attracted more and more interests for electronic devices in recent years and be candidate used to electronic material for the next generation. To understand the unique properties of graphene, we develop some techniques such as polarized Raman spectroscopy, quenching fluorescence technique…etc to investigate a lot of important issues about applications of electronic and optical devices fabricated by graphene. The strength and direction of strain on the graphene are calculated and analyzed in our study. Base on the analysis, we can measure the distribution of strain on the graphene surface during the fabricated process. It is helpful to understand the qualities of product fabricated by graphene. Because of weak Raman signals, we also use SERS technique to enhance Raman signals and investigate the substrate and dopant effects during metallic nanoparticles were deposited on graphene surface. The distributions of nanoparticles on different graphene layers are investigated as a factor to calculate the enhancement of SERS over Raman signals. The enhancement of suspended and supported graphene identified as bilayer graphene are investigated because the band structure of bilayer graphene can be tuned by applying a transverse electronic field for use in field-effect transistors. The effect of charged impurities on the substrate or the dopant effect from silver nanoparticles deposition can be explained in our work. Finally, we also use metallic nanoparticles as quencher to suppress fluorescence signals of R6G on graphene and hydrogen-terminated graphene. Base on the above studies, the unique properties of graphene can be investigated in detail and applied in electronic and optical devices.
論文目次 Abstract i
論文摘要 ii
致謝 iii
Table of Contents iv
List of Figures vi
List of Table x
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Research backgrounds 3
1-3 Overview of the Thesis 4
Chapter 2 Strain Effect on Graphene Surface by Polarized Raman Spectroscopy 7
2-1 Introduction 7
2-2 The fabrication of graphene samples 9
2-3 Specific band of graphene by Raman spectroscopy 10
2-4 Strain effect on the graphene surface 14
2-5 Polarized Raman spectroscopy 16
2-6 Experimental results and discussions 17
2-7 Conclusions 31
Chapter 3 Strain Effect on Suspended Graphene Surface by Polarized Raman Spectroscopy 32
3-1 Introduction 32
3-2 Fabrication process and method of suspended graphene samples 33
3-3 Experimental results and discussion 35
3-4 Conclusion 41
Chapter 4 Layer-Dependent Morphologies of Sliver on N-Layer Graphene 42
4-1 Introduction 42
4-2 Fabrication process and method of suspended graphene samples 43
4-3 Surface free energy and surface diffusion 45
4-4 Experimental results and discussion 46
4-5 Conclusion 53
Chapter 5 Surface-enhanced Raman Scattering of Suspend and Supported Graphene 54
5-1 Introduction 54
5-2 Preparation of samples 56
5-3 Localized surface plasmons 58
5-4 Surface-enhanced Raman scattering 59
5-5 Experimental results and discussions 61
5-6 Conclusions 71
Chapter 6 Fluorescence Quenching due to Graphene and Silver Nanoparticles 73
6-1 Introduction 73
6-2 Preparation of samples 74
6-3 Fluorescence 76
6-4 Quenching effect of Fluorescence 79
6-5 Experimental results and discussions 83
6-6 Conclusions 88
Chapter 7 Conclusions and Prospects 90
7-1 Conclusions 90
7-2 Future work 90
References 92
參考文獻 1. Terrones M, Botello-Mendez AR, Campos-Delgado J, Lopez-Urias F, Vega-Cantu YI, Rodriguez-Macias FJ, Elias AL, Munoz-Sandoval E, Cano-Marquez AG, Charlier JC, Terrones H: Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 2010, 5:351-372.
2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. Science 2004, 306:666-669.
3. Geim AK, Novoselov KS: The rise of graphene. Nat Mater 2007, 6:183-191.
4. Geim AK: Graphene: Status and Prospects. Science 2009, 324:1530-1534.
5. Bonaccorso F, Sun Z, Hasan T, Ferrari AC: Graphene photonics and optoelectronics. Nat Photonics 2010, 4:611-622.
6. Peres NMR: Colloquium: The transport properties of graphene: An introduction. Rev Mod Phys 2010, 82:2673-2700.
7. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S: Graphene based materials: Past, present and future. Prog Mater Sci 2011, 56:1178-1271.
8. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK: The electronic properties of graphene. Rev Mod Phys 2009, 81:109-162.
9. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS: Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 2011, 60:413-550.
10. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK: Raman spectrum of graphene and graphene layers. Phys Rev Lett 2006, 97:187401.
11. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS: Raman spectroscopy in graphene. Phys Rep 2009, 473:51-87.
12. Gao LB, Ren WC, Liu BL, Saito R, Wu ZS, Li SS, Jiang CB, Li F, Cheng HM: Surface and interference coenhanced Raman scattering of graphene. Acs Nano 2009, 3:933-939.
13. Wu D, Zhang F, Liu P, Feng X: Two-dimensional nanocomposites based on chemically modified graphene. Chem Eur J 2011, 17:10804-10812.
14. Sahoo S, Palai R, Katiyar RS: Polarized Raman scattering in monolayer, bilayer, and suspended bilayer graphene. J Appl Phys 2011, 110:044320.
15. Cancado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 2011, 11:3190-3196.
16. Liu CY, Liang KC, Chang CC, Tzeng YH: Effects of plasmonic coupling and electrical current on persistent photoconductivity of single-layer graphene on pristine and silver-nanoparticle-coated SiO2/Si. Opt Express 2012, 20:22943-22952.
17. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. Acs Nano 2008, 2:2301-2305.
18. Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C, Marzari N, et al: Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys Rev B 2009, 79:205433.
19. Huang MY, Yan HG, Chen CY, Song DH, Heinz TF, Hone J: Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc Natl Acad Sci U S A 2009, 106:7304-7308.
20. Sasaki K, Wakabayashi K, Enoki T: Polarization dependence of Raman spectra in strained graphene. Phys Rev B 2010, 82:205407.
22. Blake P, Hill EW, Neto AHC, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK: Making graphene visible. Appl Phys Lett 2007, 91:063124.
23. Gao LB, Ren WC, Li F, Cheng HM: Total color difference for rapid and accurate identification of graphene. Acs Nano 2008, 2:1625-1633.
24. Wang YY, Ni ZH, Shen ZX, Wang HM, Wu YH: Interference enhancement of Raman signal of graphene. Appl Phys Lett 2008, 92:043121.
25. Vidano RP, Fischbach DB, Willis LJ, Loehr TM: Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 1981, 39:341-344.
26. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R: Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 2007, 9:1276-1291.
27. Falkovsky LA: Phonon dispersion in graphene. J Exp Theor Phys 2007, 105:397-403.
28. Krauss B, Nemes-Incze P, Skakalova V, Biro LP, von Klitzing K, Smet JH: Raman Scattering at Pure Graphene Zigzag Edges. Nano Lett 2010, 10:4544-4548.
29. Gupta AK, Russin TJ, Gutierrez HR, Eklund PC: Probing graphene edges via Raman scattering. ACS Nano 2009, 3:45-52.
30. Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov KS, Basko DM, Ferrari AC: Raman spectroscopy of graphene edges. Nano Lett 2009, 9:1433-1441.
31. Cong CX, Yu T, Wang HM: Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 2010, 4:3175-3180.
32. Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A: Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett 2004, 93:247401.
33. Wang YY, Ni ZH, Yu T, Shen ZX, Wang HM, Wu YH, Chen W, Wee ATS: Raman studies of monolayer graphene: The substrate effect. J Phys Chem C 2008, 112:10637-10640.
34. Yan J, Zhang YB, Kim P, Pinczuk A: Electric field effect tuning of electron-phonon coupling in graphene. Phys Rev Lett 2007, 98:16682.
35. Yan J, Zhang YB, Goler S, Kim P, Pinczuk A: Raman scattering and tunable electron-phonon coupling in single layer graphene. Solid State Commun 2007, 143:39-43.
36. Sasaki K, Yamamoto M, Murakami S, Saito R, Dresselhaus MS, Takai K, Mori T, Enoki T, Wakabayashi K: Kohn anomalies in graphene nanoribbons. Phys Rev B 2009, 80:155450.
37. Calizo I, Balandin AA, Bao W, Miao F, Lau CN: Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 2007, 7:2645-2649.
38. Lee C, Wei XD, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321:385-388.
39. Sasaki K, Saito R, Wakabayashi K, Enoki T: Identifying the orientation of edge of graphene using G band Raman spectra. J Phys Soc Jpn 2010, 79:044603.
40. Suëtaka W: Surface Infrared and Raman Spectroscopy: Methods and Applications. New York: Plenum; 1995.
41. Wang JK, Tsai CS, Lin CE, Lin JC: Vibrational dephasing dynamics at hydrogenated and deuterated semiconductor surfaces: Symmetry analysis. J Chem Phys 2000, 113:5041-5052.
42. Kneipp K, Moskovits M, Kneipp H: Surface-Enhanced Raman Scattering: Physics and Applications. Berlin and Heidelberg: Springer-Verlag; 2006.
43. Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL: Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 2006, 18:491-495.
44. Liu CY, Dvoynenko MM, Lai MY, Chan TH, Lee YR, Wang JK, Wang YL: Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO. Appl Phys Lett 2010, 96:033109.
45. Huang CH, Lin HY, Chen ST, Liu CY, Chui HC, Tzeng YH: Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors. Opt Express 2011, 19:11441-11450.
46. Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC: Surface-enhanced Raman spectroscopy of graphene. ACS Nano 2010, 4:5617-5626.
47. Compagnini G, Forte G, Giannazzo F, Raineri V, La Magna A, Deretzis I: Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations. J Mol Struct 2011, 993:506-509.
48. Huang MY, Yan HG, Heinz TF, Hone J: Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett 2010, 10:4074-4079.
49. Pezzotti G: Spatially resolved Raman and cathodoluminescence probes in electronic materials: basics and applications. Phys Status Solidi A-Appl Mat 2011, 208:976-999.
50. Yoon D, Moon H, Son YW, Samsonidze G, Park BH, Kim JB, Lee Y, Cheong H: Strong polarization dependence of double-resonant Raman intensities in graphene. Nano Lett 2008, 8:4270-4274.
51. Liu F, Ming PM, Li J: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 2007, 76:064120.
52. Reich S, Jantoljak H, Thomsen C: Shear strain in carbon nanotubes under hydrostatic pressure. Phys Rev B 2000, 61:13389-13392.
53. Calizo I, Bao WZ, Miao F, Lau CN, Balandin AA: The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass. Appl Phys Lett 2007, 91:201904.
54. Song EB, Lian B, Xu GY, Yuan B, Zeng CF, Chen A, Wang MS, Kim S, Lang MR, Zhou Y, Wang KL: Visibility and Raman spectroscopy of mono and bilayer graphene on crystalline silicon. Appl Phys Lett 2010, 96:081911.
55. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK: Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 2005, 102:10451-10453.
56. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC: Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 2006, 6:2667-2673.
57. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L: Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 2007, 7:238-242.
58. Mo YW, Kleiner J, Webb MB, Lagally MG: Activation-energy for surface-diffusion of Si on Si(001) - A scanning-tunneling-microscopy study. Phys Rev Lett 1991, 66:1998-2001.
59. Ma LY, Tang L, Guan ZL, He K, An K, Ma XC, Jia JF, Xue QK, Han Y, Huang S, Liu F: Quantum size effect on adatom surface diffusion. Phys Rev Lett 2006, 97:266102.
60. Zhou HQ, Qiu CY, Liu Z, Yang HC, Hu LJ, Liu J, Yang HF, Gu CZ, Sun LF: Thickness-dependent morphologies of gold on n-Layer graphenes. J Am Chem Soc 2010, 132:944-946.
61. Lee J, Novoselov KS, Shin HS: Interaction between metal and graphene: dependence on the layer number of graphene. Acs Nano 2011, 5:608-612.
62. Lee J, Shim S, Kim B, Shin HS: Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chem Eur J 2011, 17:2381-2387.
63. Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC: Raman fingerprint of charged impurities in graphene. Appl Phys Lett 2007, 91:233108.
64. Ni ZH, Yu T, Luo ZQ, Wang YY, Liu L, Wong CP, Miao JM, Huang W, Shen ZX: Probing charged impurities in suspended graphene using Raman spectroscopy. Acs Nano 2009, 3:569-574.
65. Castro EV, Novoselov KS, Morozov SV, Peres NMR, Dos Santos J, Nilsson J, Guinea F, Geim AK, Neto AHC: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 2007, 99:216802.
66. Oostinga JB, Heersche HB, Liu XL, Morpurgo AF, Vandersypen LMK: Gate-induced insulating state in bilayer graphene devices. Nature Materials 2008, 7:151-157.
67. Zhang YB, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459:820-823.
68. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E: Controlling the electronic structure of bilayer graphene. Science 2006, 313:951-954.
69. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 2002, 116:6755-6759.
70. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997, 78:1667-1670.
71. Kerker M, Wang DS, Chew H: Surface enhanced Raman-scattering (SERS) by molecules adsorbed at sphereical-particles. Appl Optics 1980, 19:4159-4174.
72. Sahoo S, Palai R, Katiyar RS: Polarized Raman scattering in monolayer, bilayer, and suspended bilayer graphene. J Appl Phys 2011, 110:044320.
73. Mafra DL, Kong J, Sato K, Saito R, Dresselhaus MS, Araujo PT: Using the G' Raman cross-section to understand the phonon dynamics in bilayer graphene systems. Nano Lett 2012, 12:2883-2887.
74. Lee YH, Kim YJ: Electrical and lattice vibrational behaviors of graphene devices on flexible substrate under small mechanical strain. Appl Phys Lett 2012, 101:083102.
75. Borysenko KM, Mullen JT, Li X, Semenov YG, Zavada JM, Nardelli MB, Kim KW: Electron-phonon interactions in bilayer graphene. Phys Rev B 2011, 83:161402.
76. Jiang J, Saito R, Gruneis A, Dresselhaus G, Dresselhaus MS: Electron-phonon interaction and relaxation time in graphite. Chem Phys Lett 2004, 392:383-389.
77. Du X, Skachko I, Barker A, Andrei EY: Approaching ballistic transport in suspended graphene. Nature Nanotech 2008, 3:491-495.
78. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL: Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008, 146:351-355.
79. Zhang YB, Tan YW, Stormer HL, Kim P: Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438:201-204.
80. Cong C, Yu T, Wang H: Raman study on the G Mode of graphene for determination of edge orientation. Acs Nano 2010, 4:3175-3180.
81. Huang M, Yan H, Heinz TF, Hone J: Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett 2010, 10:4074-4079.
82. Treossi E, Melucci M, Liscio A, Gazzano M, Samori P, Palermo V: High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J Am Chem Soc 2009, 131:15576-15577.
83. Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N: A graphene platform for sensing biomolecules. Angew Chem Int Ed 2009, 48:4785-4787.
84. Voggu R, Das B, Rout CS, Rao CNR: Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J Phys: Condens Matter 2008, 20:472204.
85. Varghese N, Ghosh A, Voggu R, Ghosh S, Rao CNR: Selectivity in the interaction of electron donor and acceptor molecules with graphene and single-walled carbon nanotubes. J Phys Chem C 2009, 113:16855-16859.
86. Subrahmanyam KS, Voggu R, Govindaraj A, Rao CNR: A comparative Raman study of the interaction of electron donor and acceptor molecules with graphene prepared by different methods. Chem Phys Lett 2009, 472:96-98.
87. Das B, Voggu R, Rout CS, Rao CNR: Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun 2008:5155-5157.
88. Liu C-Y, Liang K-C, Chen W, Tu C-h, Liu C-P, Tzeng Y: Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Opt Express 2011, 19:17092-17098.
89. Behlke MA, Huang L, Bogh L, Rose S, Devor EJ: Fluorescence and fluorescence applications. Integrated DNA Technologies 2005.
90. Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE: Probing Forster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 2004, 108:1537-1543.
91. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF: Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 2005, 127:3115-3119.
92. Sen T, Patra A: Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy. J Phys Chem C 2008, 112:3216-3222.
93. Xie L, Ling X, Fang Y, Zhang J, Liu Z: Graphene as a substrate To suppress fluorescence in resonance Raman spectroscopy. J Am Chem Soc 2009, 131:9890-9891.
94. Swathi RS, Sebastian KL: Resonance energy transfer from a dye molecule to graphene. J Chem Phys 2008, 129:054703.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-12-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw