進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1711201410435400
論文名稱(中文) 研究有機太陽能電池之開路電壓受應力作用的變化與植入奈米結構對載子傳輸的影響
論文名稱(英文) Open-circuit voltage shifted by bending stress and carrier transport enhanced by embedded nanostructure for organic photovoltaic cells
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 1
出版年 103
研究生(中文) 顏嘉德
研究生(英文) Chia-Te Yen
學號 L78971039
學位類別 博士
語文別 英文
論文頁數 81頁
口試委員 指導教授-周維揚
召集委員-李玉華
口試委員-鄭弘隆
口試委員-唐富欽
口試委員-許聯崇
口試委員-劉世鈞
口試委員-陳建亨
口試委員-許火順
中文關鍵字 可撓式太陽能電池  開路電壓  奈米壓印  導電式原子力顯微鏡 
英文關鍵字 flexible solar cell  open-circuit voltage  nano-imprinting  conductive atomic force microscopy 
學科別分類
中文摘要 有機太陽能電池若製作於可撓曲軟性基板上,元件更容易攜帶和收納,例如可穿戴式的電子商品,所以近年來深受重視。因此研究可撓曲太陽能電池在彎曲下的電性特性就成了一項重要的課題。
第一部分,我們研究可撓曲小分子有機太陽能電池,其結構為PET基板/AZO/PEDOT:PSS/Pentacene/PTCDI-C7H15/Ag/Al,探討元件其開路電壓在受到外力彎曲時的變化。一般有機太陽能電池開路電壓不容易有變化,但我們發現元件受伸展應力時,開路電壓會增加;受到壓縮應力時,開路電壓會減少。為了探討產生開路電壓變化的物理機制,利用螢光光譜、吸收光譜與拉曼光譜,提供了未彎曲和彎曲時材質分子的能階變化與分子距離等資料。利用開路電壓與材質分子能階的相關性,我們得出的結論是元件受外力彎曲時材質分子距離改變,相互作用力改變,導致分子的能階改變,開路電壓因而改變。我們也利用量子化學理論計算分子距離與材質分子的能階變化關聯性,其結果驗證了我們的結論。我們也量測有機高分子太陽能電池(其結構為PET基板/AZO/PEDOT:PSS/P3HT:ICBA/Ca/Al) ,其開路電壓變化與小分子有機太陽能電池相似,受伸展應力時,開路電壓會增加;受到壓縮應力時,開路電壓會減少。
第二部分,我們研究如何提升有機高分子太陽能電池的光電轉換效率,其結構為玻璃基板/ITO/PEDOT:PSS/P3HT:ICBA/Ca/Al。奈米結構可增加界面接觸面積,因此可提升短路電流。但實驗發現,無壓印時短路電流為7.40 mA/cm2,而有壓印時為10.24 mA/cm2,增加量為38.3% ,此值遠大於界面接觸面積小於1%的增加量。為了探討電流大量增加的物理機制,我們利用低掠角X光繞射與吸收光譜得知元件結構分子的排列,發現無壓印與有壓印無差別。因此排除分子的排列因素。利用導電式原子力顯微鏡量測電流傳導,發現有壓印元件,在奈米溝槽的側面有較大的電流傳導。其原因是溝槽的側面,電洞傳輸層分子的π電子雲和主動層分子的π電子雲重疊量較大,所以載子傳輸機率加大。同時也有較多的施體/受體相分離現象發生,有利於電子的取出。這兩個因素造成光伏元件的短路電流得提升,進而提升光電轉換效率。
本論文探討了可撓曲太陽能電池在彎曲下的電特性,設計時注意開路電壓的變化,也探討了有壓印奈米結構元件,短路電流大量增加的微觀物理機制,依此可將有機太陽能電池效率再向上提升
英文摘要 Organic solar cells (OSCs) have been highly anticipated because it can be fabricated on plastic substrates and developed into flexible elements, e.g. wearable electronic merchandise. Therefore, studies of flexible OSCs characteristics under bending become an important subject.
Part 1 describes the investigation of the open circuit voltage (Voc) shift of flexible OSCs under bending conditions by fabricating heterojunction OSCs which structure was PET substrates/AZO/PEDOT:PSS/pentacene/PTCDI-C7H15/Ag/Al. Generally, Voc of OSCs is hard to change, but Voc value swing was measured when the substrate was bent under various curvatures. Voc increased and decreased using tensile and compressive stresses, respectively. Quantitative analyses of energy levels by photoluminescence spectra, UV-visible absorption spectra, and quantum chemical calculations at various bending states were performed to explain Voc as a function of bending curvature. Using the open-circuit voltage and the energy level of the molecular material relevance, we have come to the conclusion that the molecular distance between the material elements is changed by the bending force, interaction force change, resulting in changes in the energy levels of molecules, thereby changing the open-circuit voltage. We also used of quantum chemistry and theoretical calculations of molecular distances material changes in molecular energy levels relevance, the results confirm our conclusions. At last, we fabricated polymer-based OSCs, which structure is PET/AZO/PEDOT:PSS/P3HT:ICBA/Ca/Al, obtained a similar phenomenon in Voc shifts.
Part 2 describes how to promote efficiency of polymer-based OSCs, which structure is Glass substrate/ITO/PEDOT:PSS/P3HT:ICBA/Ca/Al. The added nanostructures increased interface contact area to enhance the short circuit current from 7.40 to 10.24 mA/cm2. However, the gain of current is much more than surface contact increment. The absorption spectrum and grazing incidence X-ray diffraction revealed that the chain orientation of P3HT on the PEDOT:PSS gratings was the same as that on the plane PEDOT:PSS surface. Conductive atomic force microscopy revealed that the imprinted PEDOT:PSS gratings activated hole- and electron-conducting pathways. This result could be attributed to the enhancement of the π–π orbital overlap between the P3HT and PEDOT:PSS polymer chains and grating-induced ICBA phase separation. These two effects primarily increased the short-circuit current of the imprinted devices, which increased the power conversion efficiency.
This thesis discussed the flexible devices electrical characteristics under bending and also explored Jsc increased by nano structural from microscopic physical mechanisms, so the efficiency of OSCs can be further upward.
論文目次 摘要 I
ABSTRACT III
致謝 V
CONTENTS VI
INDEX OF TABLES VIII
INDEX OF FIGURES IX
CHAPTER 1 INTRODUCTION 1
1-1 ORGANIC SOLAR CELL (OSC) 1
1-2 BASIC PRINCIPLE OF OSCS 4
1-2.1 Light absorption 5
1-2.2 Exciton diffusion 5
1-2.3 Exciton dissociation 6
1-2.4 Charge transfer and collection 6
1-3 CHARACTERIZATION OF OSC DEVICE 8
1-4 SELECTED MATERIALS 10
1-4.1 Hole transporting layer 10
1-4.2 Electron donor 10
1-4.3 Electron acceptor 11
CHAPTER 2 APPARATUS AND ANALYZING SYSTEM PRINCIPLE 18
2-1 PHYSICAL VAPOR DEPOSITION 18
2-2 J-V CHARACTERISTICS AND EXTERNAL QUANTUM EFFICIENCY MEASURING SYSTEM 19
2-3 PHOTOLUMINESCENCE AND ULTRAVIOLET-VISIBLE SPECTROPHOTOMETRY 19
2-4 RAMAN SPECTRUMS 20
2-5 ATOMIC FORCE MICROSCOPY AND CONDUCTIVE ATOMIC FORCE MICROSCOPY 21
2-6 GRAZING INCIDENT X-RAY SCATTERING 21
CHAPTER 3 THE INFLUENCE OF MOLECULAR DISTANCE CHANGING ON PHOTOVOLTAIC PROPERTIES OF FLEXIBLE ORGANIC SOLAR CELL 28
3-1 INTRODUCTION 28
3-2 EXPERIMENTAL METHODS 30
3-2.1 Devices Fabrication 30
3-2.2 Measurements and Analysis 30
3-2.3 Theoretical Calculation 31
3-3 RESULTS AND DISCUSSION 32
3-4 CONCLUSIONS 38
CHAPTER 4 CHARGE TRANSFER BEHAVIOR OF POLYMER SOLAR CELL EMBEDDED WITH IMPRINTED HOLE TRANSPORT LAYER 48
4-1 INTRODUCTION 48
4-2 EXPERIMENTAL METHODS 50
4-2.1 Mold fabrication 50
4-2.2 Groove constructed 50
4-2.3 Device fabrication 51
4-2.4 Measurement and analysis 51
4-3 RESULTS AND DISCUSSION 53
4-4 CONCLUSIONS 59
CHAPTER 5 CONCLUSION AND OUTLOOK 68
REFERENCE 70
APPENDIXES 77
A. LIST OF ABBREVIATIONS 77
B. LIST OF SYMBOLS 79
LIST OF PUBLICATIONS 80
參考文獻 [1]P. John “The Silicon Solar Cell Turns 50”, NREL, 2004
[2]C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
[3]C. Adachi, T. Tsutsui and S. Saito, Appl Phys Lett, 1990, 57, 531
[4]P. Peumans, S. R. Forrest, Appl Phys Lett, 2001, 79, 126
[5]P. Peumans, V. Bulovic, S. R. Forrest, Appl Phys Lett, 2000, 76, 2650
[6]S. Uchida, J. G. Xue, B. P. Rand, S. R. Forrest, Appl Phys Lett, 2004, 84, 4218
[7]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Synthetic Met, 1993, 59, 333
[8]S. Morita, A. A. Zakhidov, K. Yoshino, Solid State Commun, 1992, 82, 249
[9]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 1992, 258, 1474
[10]S. Woo, W. H. Kim, H. Kim, Y. Yi, H. K. Lyu, Y. Kim, Adv Energy Mater, 2014, 4, 1400133
[11]K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl, P. Heremans, Nat Commun, 2014, 5, 17
[12]M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog Photovoltaics, 2014, 22, 701.
[13]G. Li, R. Zhu, Y. Yang, Nat Photonics, 2012, 6, 153
[14]J. M. Nunzi, Cr Phys 2002, 3, 5231
[15]H. Hoppe; N. S. Sariciftci, J Mater Res, 2004, 19, 1924
[16]H. Gommans; S. Schols, A. Kadashchuk, P. Heremans, S. C. J. Meskers, J Phys Chem C, 2009, 113, 2974
[17]T. Stubinger, W. Brutting, J Appl Phys, 2001, 90, 3632
[18]P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, adv. Mater, 2007, 19, 1551
[19]W. A. Luhman, R. J. Holmes, Adv Funct Mater, 2011, 21, 764
[20]M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. L. Brabec, Advanced Materials, 2006, 18, 789
[21]H. X. Zhou, L. Q. Yang, W. You, Macromolecules, 2012, 45, 607
[22]S. Karak, V. S. Reddy, S. K. Ray and A. Dhar, Org. Electron., 2009, 10, 1006.
[23]S. Yoo, B. Domercq and B. Kippelen, Appl. Phys. Lett., 2004, 85, 5427.
[24]P. Peumans, A. Yakimov and S. R. Forrest, J. Appl. Phys., 2003, 93, 3693.
[25]A. K. Pandey, S. Dabos-Seignon and J.-M. Nunzi, Appl. Phys. Lett., 2006, 89, 113506.
[26]D. Angmo, S. A. Gevorgyan, T. T. Larsen-Olsen, R. R. Sondergaard, M. Hosel, M. Jorgensen, R. Gupta, G. U. Kulkarni and F. C. Krebs, Org. Electron., 2013, 14, 984.
[27]B. Yoon, D. Y. Ham, O. Yarimaga, H. An, C. W. Lee and J. M. Kim, Adv. Mater., 2011, 23, 5492.
[28]B. Gholamkhass and P. Servati, Org. Electron., 2013, 14, 2278.
[29]S. P. Yang, Y. Zhang, T. Jiang, X. F. Sun, C. Q. Lu, G. Li, X. W. Li and G. S. Fu, Chinese Sci. Bull., 2014, 59, 297.
[30]Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu and Y. Cao, Nat. Photonics, 2012, 6, 591.
[31]S. F. Chen, X. Guo, Q. Wu, X. F. Zhao, M. Shao and W. Huang, Chinese Phys. B, 2013, 22, 128560.
[32]A. Chida, T. Aoyama, S. Eguchi, T. Inoue, N. Senda, T. Sakuishi, H. Ikeda, S. Shitagaki, N. Ohsawa, H. Inoue, K. Suzuki, H. Seo, T. Sasaki, Y. Nonaka, H. Nakashima, T. Suzuki, T. Watabe, S. Seo, Y. Hirakata, S. Yamazaki, S. Yasumoto, M. Sato, Y. Yasuda, S. Okazaki, W. Nakamura and S. Mitsui, J. Soc. Inf. Display, 2013, 21, 422.
[33]F. C. Krebs, J. Fyenbo and M. Jorgensen, J. Mater. Chem., 2010, 20, 8994-9001.
[34]K. H. Tsai, J. S. Huang, M. Y. Liu, C. H. Chao, C. Y. Lee, S. C. Hung and C. F. Lin, J. Electrochem. Soc., 2009, 156, B1188.
[35]A. K. Pandey and J.-M. Nunzi, Appl. Phys. Lett., 2006, 89, 213506.
[36]G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte and R. Pacios, Org. Electron., 2008, 9, 847.
[37]N. Tessler, Y. Preezant, N. Rappaport and Y. Roichman, Adv. Mater., 2009, 21, 2741.
[38]F. Yang and S. R. Forrest, Acs Nano, 2008, 2, 1022.
[39]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
[40]C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 374.
[41]A. Moliton and J. M. Nunzi, Polym. Int., 2006, 55, 583.
[42]Y. Berredjem, N. Karst, L. Cattin, A. Lakhdar-Toumi, A. Godoy, G. Soto, F. Diaz, M. A. Del Valle, M. Morsli, A. Drici, A. Boulmokh, A. H. Gheid, A. Khelil and J. C. Bernède, Dyes Pigments, 2008, 78, 148.
[43]K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold and P. Bäuerle, Adv. Mater., 2006, 18, 2872.
[44]H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang and X. W. Liang, Adv. Funct. Mater., 2007, 17, 3639.
[45]V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, J. Appl. Phys., 2003, 94, 6849.
[46]M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
[47]B. Zhang, X. W. Hu, M. Q. Wang, H. P. Xiao, X. Gong, W. Yang and Y. Cao, New J. Chem., 2012, 36, 2042.
[48]F. C. Tang, J. Chang, F. C. Wu, H. L. Cheng, S. L. C. Hsu, J. S. Chen and W. Y. Chou, J. Mater. Chem., 2012, 22, 22409.
[49]Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu and Y. Cao, Nat Photonics, 2012, 6, 591.
[50]S. J. Liu, K. Zhang, J. M. Lu, J. Zhang, H. L. Yip, F. Huang and Y. Cao, J Am Chem Soc, 2013, 135, 15326.
[51]T. B. Yang, M. Wang, C. H. Duan, X. W. Hu, L. Huang, J. B. Peng, F. Huang and X. Gong, Energ Environ Sci, 2012, 5, 8208.
[52]J. B. You, L. T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li and Y. Yang, Nat Commun, 2013, 4.
[53]C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds and F. So, Nat Photonics, 2012, 6, 115.
[54]Y. Yang, K. Mielczarek, M. Aryal, A. Zakhidov and W. Hu, Acs Nano, 2012, 6, 2877.
[55]W. Y. Chou, J. Chang, C. T. Yen, F. C. Tang, H. L. Cheng, M. H. Chang, S. L. C. Hsu, J. S. Chen and Y. C. Lee, Appl Phys Lett, 2011, 99, 183108.
[56]W. H. Baek, I. Seo, T. S. Yoon, H. H. Lee, C. M. Yun and Y. S. Kim, Sol Energ Mat Sol C, 2009, 93, 1587.
[57]C. Y. Kuo and C. Gau, Appl Phys Lett, 2009, 95, 053302.
[58]P. M. Sirimanne, E. V. A. Premalal and H. Minoura, Renew Energ, 2011, 36, 405.
[59]D. Y. Liu, M. Y. Zhao, Y. Li, Z. Q. Bian, L. H. Zhang, Y. Y. Shang, X. Y. Xia, S. Zhang, D. Q. Yun, Z. W. Liu, A. Y. Cao and C. H. Huang, Acs Nano, 2012, 6, 11027.
[60]W. Kylberg, F. A. de Castro, P. Chabrecek, T. Geiger, J. Heier, P. G. Nicholson, F. Nuesch, E. Theocharous, U. Sonderegger and R. Hany, Prog Photovoltaics, 2013, 21, 652.
[61]K. Soderstrom, J. Escarre, O. Cubero, F. J. Haug, S. Perregaux and C. Ballif, Prog Photovoltaics, 2011, 19, 202.
[62]M. A. G. Lazo, R. Teuscher, Y. Leterrier, J. A. E. Manson, C. Calderone, A. Hessler-Wyser, P. Couty, Y. Ziegler and D. Fischer, Sol Energ Mat Sol C, 2012, 103, 147.
[63]G. Leising, B. Stadlober, U. Haas, A. Haase, C. Palfinger, H. Gold and G. Jakopic, Microelectron Eng, 2006, 83, 831.
[64]Y. C. Lee, S. C. Yeh, Y. Y. Chou, P. J. Tsai, J. W. Pan, H. M. Chou, C. H. Hou, Y. Y. Chang, M. S. Chu, C. H. Wu and C. H. Ho, Microelectron Eng, 2013, 105, 86.
[65]N. Sanetra, Z. Karipidou, R. Wirtz, N. Knorr, S. Rosselli, G. Nelles, A. Offenhaeusser and D. Mayer, Adv Funct Mater, 2012, 22, 1129.
[66]M. R. Cavallari, V. R. Zanchin, M. Pojar, A. C. Seabra, M. D. Pereira-da-Silva, F. J. Fonseca and A. M. De Andrade, J Electron Mater, 2014, 43, 1317.
[67]H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang and C. C. Yang, Nanotechnology, 2013, 24, 065102.
[68]C. M. Bates, M. A. B. Pantoja, J. R. Strahan, L. M. Dean, B. K. Mueller, C. J. Ellison, P. F. Nealey and C. G. Willson, J Polym Sci Pol Chem, 2013, 51, 290.
[69]T. A. Skotheim, J. Reynolds, in Conjugated Polymers: Processing and Applications, CRC Press,USA, 3rd edn., 2006, ch 2, pp. 3.
[70]J. Y. Li, Y. C. Ho, Y. C. Chung, F. C. Lin, W. L. Liao and W. B. Tsai, Biofabrication, 2013, 5, 035003.
[71]F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers and A. Shim, Nano Lett, 2004, 4, 2467.
[72]C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv Funct Mater, 2001, 11, 374.
[73]J. F. Chang, J. Clark, N. Zhao, H. Sirringhaus, D. W. Breiby, J. W. Andreasen, M. M. Nielsen, M. Giles, M. Heeney and I. McCulloch, Phys Rev B, 2006, 74, 115318.
[74]H. L. Cheng, J. W. Lin, F. C. Wu, W. R. She, W. Y. Chou, W. J. Shih and H. S. Sheu, Soft Matter, 2011, 7, 351.
[75]Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha and M. Ree, Nat Mater, 2006, 5, 197.
[76]R. J. Kline and M. D. McGehee, Polym Rev, 2006, 46, 27.
[77]M. Aryal, K. Trivedi and W. C. Hu, Acs Nano, 2009, 3, 3085.
[78]X. T. Hao, T. Hosokai, N. Mitsuo, S. Kera, K. K. Okudaira, K. Mase and N. Ueno, J Phys Chem B, 2007, 111, 10365.
[79]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, Nature, 1999, 401, 685.
[80]Y. P. Jiang, Q. Qi, R. Wang, J. Zhang, Q. K. Xue, C. Wang, C. Jiang and X. H. Qiu, Acs Nano, 2011, 5, 6195.
[81]C. Ionescu-Zanetti, A. Mechler, S. A. Carter and R. Lal, Adv Mater, 2004, 16, 385.
[82]P. Dutta, Y. Xie, M. Kumar, M. Rathi, P. Ahrenkiel, D. Galipeau, Q. Q. Qiao and V. Bommisetty, J Photon Energy, 2011, 1, 011124.
[83]D. Martin, M. Grube, P. Reinig, L. Oberbeck, J. Heitmann, W. M. Weber, T. Mikolajick and H. Riechert, Appl Phys Lett, 2011, 98, 012901.
[84]T. A. Bull, L. S. C. Pingree, S. A. Jenekhe, D. S. Ginger and C. K. Luscombe, Acs Nano, 2009, 3, 627.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-11-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw