進階搜尋


下載電子全文  
系統識別號 U0026-1710201813590000
論文名稱(中文) 週期荷載與重力效應作用下飽和土壤壓密之孔彈性理論
論文名稱(英文) Theory of Poroelasticity for Consolidation in Saturated Soils with Gravity Effect under Cyclic Loading
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 雷沃
研究生(英文) Wout Lexmond
學號 N86057037
學位類別 碩士
語文別 英文
論文頁數 39頁
口試委員 指導教授-羅偉誠
口試委員-陳主惠
口試委員-徐國錦
口試委員-巫孟璇
中文關鍵字 none 
英文關鍵字 poroelasticity  saturated porous media  consolidation  gravitational body forces  cyclic loading 
學科別分類
中文摘要 none
英文摘要 Only few studies have used the popular theory of linear poroelasticity to conduct quantitative research on the effect of gravity on consolidation. In this thesis, the theory of poroelasticity is generalized to account for gravitational body forces. Two coupled partial differential equations are derived that together govern the three-dimensional consolidation of saturated porous media. The governing equations are adapted to the one-dimensional compression of a homogeneous saturated clay layer. For this example, an instantaneous undrained response is taken as the initial condition. Additionally, boundary conditions are defined in a way that allows us to incorporate cyclic loading and the following three drainage scenarios: top drained, bottom drained, and top and bottom drained. Subsequently, the consolidation problem was solved numerically using a finite difference scheme. The obtained results show that the effect of body forces on pore water pressure increases with depth to a maximum after one day of 0:9 % and 1:3 % under cyclic and constant loading conditions, respectively. It is also shown that pore pressures become highly variable over depth after 1 hour after the start of cyclic loading. Lastly, we demonstrate that total settlement over time is significantly lower when a cyclic load is imposed instead of a constant load and that the manner of loading and the type of drainage condition have no effect on the relative difference in total settlement resulting from the gravity effect.
論文目次 Table of Contents
Abstract i
Acknowledgements ii
Table of Contents iii
List of Tables iv
List of Figures v
Chapter 1.Introduction 1
Chapter 2.Porelasticity theory 3
Chapter 3.Methods 7
3.1.Governing equations ...........7
3.2.Initial and boundary conditions ........8
3.3.Discretization and numerical solutions ........11
3.4.Numerical analyses ..........14
Chapter 4.Results and discussion 17
4.1.Numerical model validation ..........17
4.2.Pore water pressure comparisons .........19
4.2.1.Pore water pressure ranges ........19
4.2.2.Absolute pore water pressure differences .....21
4.2.3.Relative pore water pressure differences .....28
4.3.Settlement comparisons ..........32
4.3.1.Absolute settlement ..........32
4.3.2.Relative settlement ..........32
4.4.Future recommendations .........35
Chapter 5.Conclusion 36
References 37
Appendix A.Exact solution 39
A.1.Exact solutions ............39
參考文獻 Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of applied physics, 12(2):155–164.
Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid.
ii. higher frequency range. The Journal of the acoustical Society of america, 28(2):179– 191.
Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media.
Journal of applied physics, 33(4):1482–1498.
Biot, M. A. and Willis, D. G. (1957). The elastic coefficients of the theory of consolidation.
J. appl. Mech, 24:594–601.
Cheng, A. H.-D. (2016). Poroelasticity. Theory and Applications of Transport in Porous Media 27. Springer International Publishing, 1 edition.
Coussy, O. (2004). Poromechanics. John Wiley & Sons.
Detournay, E. and Cheng, A. H.-D. (1995). Fundamentals of poroelasticity. In Analysis and design methods, pages 113–171. Elsevier.
Gibson, R. E., Schiffman, R. L., and Cargill, K. W. (1981). The theory of one-dimensional consolidation of saturated clays. ii. finite nonlinear consolidation of thick homogeneous layers. Canadian geotechnical journal, 18(2):280–293.
Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, H., Hasselmann, D., Kruseman, P., et al. (1973). Measurements of wind-wave growth and swell decay during the joint north sea wave project (jonswap). Ergänzungsheft 8-12.
Huang, B.-S. (2003). Ground rotational motions of the 1999 chi-chi, taiwan earthquake as inferred from dense array observations. Geophysical Research Letters, 30(6).
Lo, W.-C., Chao, N.-C., Chen, C.-H., and Lee, J.-W. (2017). Poroelastic theory of consolidation in unsaturated soils incorporating gravitational body forces. Advances in Water Resources, 106:121–131.
Lo, W.-C., Sposito, G., and Chu, H. (2014). Poroelastic theory of consolidation in unsaturated soils. Vadose Zone Journal, 13(5).
Lo, W.-C., Sposito, G., Lee, J.-W., and Chu, H. (2016). One-dimensional consolidation in unsaturated soils under cyclic loading. Advances in water resources, 91:122–137.
Lo, W.-C., Sposito, G., and Majer, E. (2002). Immiscible two-phase fluid flows in deformable porous media. Advances in Water Resources, 25(8-12):1105–1117.
Lo, W.-C., Sposito, G., and Majer, E. (2005). Wave propagation through elastic porous media containing two immiscible fluids. Water Resources Research, 41(2).
Lo, W.-C., Yeh, C.-L., and Tsai, C.-T. (2007). Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions. Journal of hydrology, 338(3- 4):273–284.
Mei, C. C. (1985). Gravity effects in consolidation of layer of soft soil. Journal of engineering mechanics, 111(8):1038–1047.
Terzaghi, K. (1923). Die berechnung der durchassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungs. erscheinungen. Sitzungsber. Akad. Wiss. Math. Naturwiss.
Kl. Abt. 2A, 132:105–124.
Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke.
Tsai, T.-L., Chang, K.-C., and Huang, L.-H. (2006). Body force effect on consolidation of porous elastic media due to pumping. Journal of the Chinese Institute of Engineers, 29(1):75–82.
Tseng, C.-M., Tsai, T.-L., and Huang, L.-H. (2008). Effects of body force on transient poroelastic consolidation due to groundwater pumping. Environmental geology, 54(7):1507–1516.
Verruijt, A. (2013). Theory and problems of poroelasticity.
Wang, H. F. (2000). Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-10-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-10-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw