進階搜尋


下載電子全文  
系統識別號 U0026-1710201316164400
論文名稱(中文) 以功能性觀點評量及治療手部感覺動作缺損
論文名稱(英文) Assessment and Intervention for the Hands with Sensorimotor Deficits Based on Functional Perspectives
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 102
學期 1
出版年 102
研究生(中文) 徐秀雲
研究生(英文) Hsiu-Yun Hsu
學號 P88991018
學位類別 博士
語文別 英文
論文頁數 108頁
口試委員 指導教授-蘇芳慶
口試委員-邱浩遠
口試委員-林高田
口試委員-林克忠
口試委員-周一鳴
口試委員-郭立杰
中文關鍵字 生物力學  感覺  手功能  神經受損 
英文關鍵字 biomechanics  sensation  hand function  nerve injury 
學科別分類
中文摘要 藉由手部特殊的解剖構造與皮膚上豐富的感覺受器,人類呈現了最佳的抓握表現。複雜的神經與肌肉控制顯著地影響人類執行功能性活動的表現,藉由臨床觀察,我們發現病患執行日常活動時,手部感覺問題會顯著地影響動作控制的準確度。根據我們之前的研究成果,證明觸覺功能和指尖力量控制之精準度存在顯著相關性,由此我們可以知道,感覺與動作之間的緊密耦合是手部精細動作協調的重要基礎;也因此,我們定義以生物力學觀點去分析手部感覺動作控制為「功能性感覺評估測量」。藉由此量測,配合傳統的感覺評估項目,提供臨床人員對於感覺神經受傷病患的感覺動作控制有更深入之瞭解。然而,先前的研究設計並未針對周邊神經受損病患建立「功能性感覺評估」之量測效度,敏感性及變異性,因此本論文的第一個目的希望建構「功能性感覺評估」之效度及精準性,以了解此測驗評估手部感覺動作控制之可行性。然而並非所有臨床場所都具備此精密的生物力學量測設備,用以評量患者的功能性感覺,因此本論文的第二個目的為發展一套具有臨床及功能性意義的「操作型感覺測試工具」,提供更多臨床人員能更客觀地評量神經受損病患之感覺功能狀態;另外,針對手部感覺功能缺失之病患,除了傳統的感覺再教育及手部功能訓練外,目前臨床上並未有合宜的治療模式用以增進病患之感覺動作控制。所以本論文的第三個目的為建構一生物回饋再教育系統,用於治療感覺動作控制缺損。
本論文包含了藉由分析腕隧道症候群病患及正常受測者來驗證該「功能性」及「操作型」感覺測試於評估神經受損病患之效度、敏感性及準確性,亦建立常模資料,並且探討病患在操作型感覺測試與傳統感覺測試之施測結果與其執行動態抓握時力量調整之相關性。此外,探討感覺受損中風病患接受生物回饋感覺再教育系統之治療成效也是本論文分析的重點。本論文利用許多科學量化之生物力學原理及設備探討手部神經損傷之病患精細動作控制機制,及藉由功能性導向的觀念協助臨床工作者對於病患感覺動作缺損作出精確的診斷,並安排疾病或受傷後的適當治療。
英文摘要 The biomechanical advantage of an opposed thumb combined with the mechanoreceptors in the glabrous skin of grasping digits provide the capacity of optimizing and maintaining precision grip. Our previous efforts have proved that there was significant correlation between tactile sensibility and fingertip force control in a pinch-holding-up activity. For the tight coupling between sensory and motor in hand coordination, the ability of adjusting pinch force when executing functional task has been defined as “functional sensibility” for nerve injury patients. However, the sensitivity and validity of the previously designed pinch apparatus have not been established. As well as, the measuring apparatus required for such a sophisticated precision pinch performance assessment is not readily available in most clinical settings. Moreover, there was no appropriate equipment for restoring sensorimotor function for patients with impaired sensibility in clinics. Therefore, there were three specific purposes in this dissertation. The first purpose was to assess the feasibility of a “functional sensibility test” as an assisted examination for determining precision pinch performance in patients with carpal tunnel syndrome. In addition, the second purpose was to develop a new “manual tactile test” and understand the clinical and functional merits of the new test for determining sensorimotor deficit for peripheral nerve injury patients. And, the third purpose was to develop a computerized re-education system to enhance hand coordination for clinical use.
We examined the validity, sensitivity and accuracy of the functional sensibility tests and manual tactile test by analyzing the differences between carpal tunnel syndrome (CTS) patients and healthy controls. The relationship between the results of manual tactile sensibility, traditional sensibility test and the precision pinch performance for the carpal tunnel syndrome patients has also been analyzed. In addition, the training effects of a computerized evaluation and re-education biofeedback system on the hand coordination of the sensory stroke patients were also analyzed. The anticipated achievement of the dissertation will be to analyze and enhance neuromuscular control of the hands with functional perspectives to assist the clinicians to make a precise diagnosis and arrange appropriate treatments after injury.
論文目次 摘要 I
Abstract II
誌謝 IV
List of Tables IX
List of Figures XI
Chapter 1 General Introduction 1
1.1 Research Background 1
1.2 Our previous Efforts 5
1.3 Clinical Relevance 7
1.4 Motivations 7
1.5 Specific Aims 8
1.6 Dissertation Outline 10
Chapter 2 Precision Pinch Performance in Patients with Sensory Deficits of the Median Nerve at the Carpal Tunnel 12
2.1 Feasibility of a Novel Functional Sensibility Test as an Assisted Examination for Determining Precision Pinch Performance in Patients with Carpal Tunnel Syndrome 12
2.1.1 Introduction 12
2.1.2 Materials and methods 15
2.1.2.1 Subjects 15
2.1.2.2 Ethics statements 16
2.1.2.3 Instruments 16
2.1.2.4 Procedures of the PHUA Test 18
2.1.2.5 Data Processing and Analysis 18
2.1.2.6 Experimental Protocol. 19
2.1.2.7 Statistical Analysis. 20
2.1.3 Results 21
2.1.4 Discussion 25
2.2 Precision Pinch Performance in Patients with Sensory Deficits of the Median Nerve at the Carpal Tunnel 28
2.2.1 Motivation and Specific Purposes 28
2.2.2Materials and Methods 28
2.2.2.1 Subjects 28
2.2.2.2 Ethics Statements 30
2.2.2.3 Instruments 30
2.2.2.4 Procedures of the PHUA Test 30
2.2.2.5 Data Processing and Analysis 30
2.2.2.5 Statistical Analysis 32
2.2.3 Results 33
2.2.4 Discussion 36
2.3 Sensorimotor Control in Hand: a Functional Outcome Indicator to Represent the Treatment Effect for Carpal Tunnel Syndrome 39
2.3.1 Motivation and Specific Purposes 39
2.3.2 Materials and Methods 39
2.3.2.1 Subjects 39
2.3.2.3 Instruments 40
2.3.2.4 Procedures of the PHUA Test 40
2.3.2.5 Experimental Procedures 40
2.3.2.6 Statistics Analysis 40
2.3.3 Results 41
2.3.4 Discussion 45
2.4 Conclusion 48
Chapter 3 Usefulness of Manual Tactile Test for Predicting Precision Pinch Performance and Severity in Carpal Tunnel Syndrome 49
3.1 Establishment of a Proper Manual Tactile Test for Hands with Sensory Deficits 49
3.1.1 Introduction 49
3.1.2 Materials and Methods 52
3.1.2.1 General Design. 52
3.1.2.2 Participants. 52
3.1.2.3 Manual Tactile Test (MTT). 53
3.1.2.4 Traditional Sensibility Tests. 55
3.1.2.5 Exp Protocol. 55
3.1.2.6 Statistics Analysis. 56
3.1.3 Results 57
3.1.4 Discussion 62
3.2 Diagnosis from Functional Perspectives: Usefulness of a Manual Tactile Test for Predicting Precision Pinch Performance and Disease Severity in Subjects with Carpal Tunnel Syndrome 64
3.2.1 Motivation and Specific Aims 64
3.2.2 Materials and Methods 65
3.2.2.1 Participants, MTT, Traditional Sensibility Tests, Nerve Conduction Study and Pinch Apparatus 65
3.2.2.2 The Grading for CTS hands 65
3.2.2.3 Statistical Analyses. 65
3.2.3 Results 66
3.2.4 Discussion 70
3.3 Conclusion 72
Chapter 4 Clinical Application of Computerized Evaluation and Re-education Biofeedback Prototype for Sensorimotor Control of the Hand in Stroke Patients 73
4.1 Introduction 73
4.2 Materials and methods 76
4.2.1 Participants 76
4.2.2 Instrumentation 77
4.2.3 Traditional Sensory Test 79
4.2.4 Hand Function Test 80
4.2.5 Experimental Procedures 80
4.2.6 Data Analysis 81
4.3 Results 81
4.4 Discussion 86
Chapter 5 Summary and Future Work 90
5.1 Summary of the Present Work 90
5.2 Dissertation Limitation 96
5.3 Suggestion for Future Work 97
References 98
參考文獻 References
1. Johansson RS, Cole KJ.Sensory-motor coordination during grasping and manipulative actions. Curr Opin Neurobiol 2: 815-823, 1992.
2. Fagg AH, Arbib MA. Modeling parietal-premotor interactions in primate control of grasping. Neural Netw 11: 1277-1303, 1998.
3. Oztop E, Bradley NS, Arbib MA. Infant grasp learning: a computational model. Exp Brain Res 158: 480-503, 2004.
4. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9: 718-727, 1999.
5. Diagnosis of the carpal tunnel syndrome. Lancet 1: 854-855, 1985.
6. Keith MW, Masear V, Chung K, Maupin K, Andary M, et al. Diagnosis of carpal tunnel syndrome. J Am Acad Orthop Surg 17: 389-396, 2009.
7. Shieh SJ, Chiu HY, Lee JW, Hsu HY. Evaluation of the effectiveness of sensory reeducation following digital replantation and revascularization. Microsurgery 16: 578-582, 1995.
8. Shieh SJ, Hsu HY, Kuo LC, Su FC, Chiu HY. Correlation of digital sensibility and precision of pinch force modulation in patients with nerve repair. J Orthop Res 29: 1210- 1215, 2011.
9. Tamburin S, Cacciatori C, Marani S, Zanette G. Pain and motor function in carpal tunnel syndrome: a clinical, neurophysiological and psychophysical study. J Neurol 255: 1636-1643, 2008.
10. Dellon AL, Evaluation of sensibility and re-education of sensation in the hand. Williams and Wilkins, Baltimore. 1981.
11. Dellon AL, The sensational contributions of Erik Moberg. J Hand Surg Br 15: 14-24, 1990.
12. Moberg E. Objective methods for determining the functional value of sensibility in the hand. J Bone Joint Surg Br 40-B: 454-476, 1958.
13. Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56: 550-564, 1984.
14. Westling G, Johansson RS. Factors influencing the force control during precision grip. Exp Brain Res 53: 277-284, 1984.
15. Lederman SJ, Klatzky RL. Hand movements: a window into haptic object recognition. Cogn Psychol 19: 342-368, 1987.
16. Naito E, Ehrsson HH. Somatic sensation of hand-object interactive movement is associated with activity in the left inferior parietal cortex. J Neurosci 26: 3783-3790, 2006.
17. Overvliet KE, Smeets JB, Brenner E. The use of proprioception and tactile information in haptic search. Acta Psychol (Amst) 129: 83-90, 2008.
18. Smith AM, Chapman CE, Donati F, Fortier-Poisson P, Hayward V. Perception of simulated local shapes using active and passive touch. J Neurophysiol 102: 3519-3529, 2009.
19. Williams PS, Basso DM, Case-Smith J, Nichols-Larsen DS. Development of the Hand Active Sensation Test: reliability and validity. Arch Phys Med Rehabil 87: 1471-1477, 2006.
20. Johansson RS, Riso R, Hager C, Backstrom L. Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Exp Brain Res 89: 181-191, 1992.
21. Nowak DA, Hermsdorfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res 145: 28-39, 2002.
22. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci 3 Suppl: 1212-1217, 2000.
23. Duff SV. Impact of peripheral nerve injury on sensorimotor control. J Hand Ther 18: 277-291, 2005.
24. Nowak DA, Glasauer S, Hermsdorfer J. How predictive is grip force control in the complete absence of somatosensory feedback? Brain 127: 182-192, 2004.
25. Hsu HY, Kuo LC, Chiu HY, Jou IM, Su FC. Functional sensibility assessment. Part II: Effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release. J Orthop Res 27: 1534-1539, 2009.
26. Johansson RS, Westling G, Backstrom A, Flanagan JR. Eye-hand coordination in object manipulation. J Neurosci 21: 6917-6932, 2001.
27. Chiu HY, Hsu HY, Su FC, Jou IM, Lin CF, et al. Setup of a novel biofeedback prototype for sensorimotor control of the hand and preliminary application in patients with peripheral nerve injuries. Phys Ther 93: 168-178, 2013.
28. Werner RA, Andary M. Carpal tunnel syndrome: pathophysiology and clinical neurophysiology. Clin Neurophysiol 113: 1373-1381, 2002.
29. Chapman CE. Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can J Physiol Pharmacol 72: 558-570, 1994.
30. Chiu HY, Hsu HY, Kuo LC, Chang JH, Su FC. Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control. J Orthop Res 27: 1116-1121, 2009.
31. Kendall D. Aetiology, diagnosis, and treatment of paraesthesiae in the hands. Br Med J 2: 1633-1640, 1960.
32. Jablecki CK, Andary MT, So YT, Wilkins DE, Williams FH. Literature review of the usefulness of nerve conduction studies and electromyography for the evaluation of patients with carpal tunnel syndrome. AAEM Quality Assurance Committee. Muscle Nerve 16: 1392-1414, 1993.
33. Padua L, Lo Monaco M, Padua R, Gregori B, Tonali P. Neurophysiological classification of carpal tunnel syndrome: assessment of 600 symptomatic hands. Ital J Neurol Sci 18: 145-150, 1997.
34. Nishimura A, Ogura T, Hase H, Makinodan A, Hojo T, et al. Objective evaluation of sensory function in patients with carpal tunnel syndrome using the current perception threshold. J Orthop Sci 8: 625-628, 2003.
35. Heywood JT, Morley JW. Texture discrimination in carpal tunnel syndrome. Brain 115 ( Pt 4): 1081-1092, 1992.
36. Dannenbaum RM, Michaelsen SM, Desrosiers J, Levin MF. Development and validation of two new sensory tests of the hand for patients with stroke. Clin Rehabil 16: 630-639, 2002.
37. Johansson RS, Westling G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp Brain Res 66: 141-154, 1987.
38. Nowak DA, Hermsdorfer J. Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits. Neurosci Res 47: 65-72, 2003.
39. Rempel D, Evanoff B, Amadio PC, de Krom M, Franklin G, et al. Consensus criteria for the classification of carpal tunnel syndrome in epidemiologic studies. Am J Public Health 88: 1447-1451, 1998.
40. Sen D, Chhaya S, Morris VH. Carpal tunnel syndrome. Hosp Med 63: 392-395, 2002.
41. Lowe BD, Freivalds A. Effect of carpal tunnel syndrome on grip force coordination on hand tools. Ergonomics 42: 550-564, 1999.
42. Thonnard J, Saels P, Van den Bergh P, Lejeune T. Effects of chronic median nerve compression at the wrist on sensation and manual skills. Exp Brain Res 128: 61-64, 1999.
43. Cole KJ, Steyers CM, Graybill EK. The effects of graded compression of the median nerve in the carpal canal on grip force. Exp Brain Res 148: 150-157, 2003.
44. Navarro X, Vivo M, Valero-Cabre A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82: 163-201, 2007.
45. Tinazzi M, Zanette G, Volpato D, Testoni R, Bonato C, et al. Neurophysiological evidence of neuroplasticity at multiple levels of the somatosensory system in patients with carpal tunnel syndrome. Brain 121 ( Pt 9): 1785-1794, 1998.
46. Rajesh KS, Lowery LT. The Electromyographer's Handbook. Little, Brown and Company, Boston/Toronto. 199 p, 1989.
47. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47: 381-391, 1954.
48. Demirci S, Savas S, Sonel B. Comparison of Median Sensory Conduction Values Proximal and Distal to Wrist Segment in Mild Carpal Tunnel Syndrome. Journal of Physical Therapy Science 12: 87-89, 2000.
49. Prakash KM, Fook-Chong S, Leoh TH, Dan YF, Nurjannah S, et al. Sensitivities of sensory nerve conduction study parameters in carpal tunnel syndrome. J Clin Neurophysiol 23: 565-567, 2006.
50. Almquist E, Eeg-Olofsson O. Sensory-nerve-conduction velocity and two-point discrimmination in sutured nerves. J Bone Joint Surg Am 52: 791-796, 1970.
51. Jerosch-Herold C, Shepstone L, Miller L, Chapman P. The responsiveness of sensibility and strength tests in patients undergoing carpal tunnel decompression. BMC Musculoskelet Disord 12: 244, 2011.
52. Katz JN, Losina E, Amick BC, 3rd, Fossel AH, Bessette L, et al. Predictors of outcomes of carpal tunnel release. Arthritis Rheum 44: 1184-1193, 2001.
53. Chow JC. Endoscopic release of the carpal ligament for carpal tunnel syndrome: 22-month clinical result. Arthroscopy 6: 288-296, 1990.
54. Gelberman RH, Szabo RM, Williamson RV, Hargens AR, Yaru NC, et al. Tissue pressure threshold for peripheral nerve viability. Clin Orthop Relat Res: 285-291, 1983.
55. Witney AG, Wing A, Thonnard JL, Smith AM. The cutaneous contribution to adaptive precision grip. Trends Neurosci 27: 637-643, 2004.
56. Bland JD. Do nerve conduction studies predict the outcome of carpal tunnel decompression? Muscle Nerve 24: 935-940, 2001.
57. Hansson P, Backonja M, Bouhassira D. Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain 129: 256-259, 2007.
58. Winter R, Harrar V, Gozdzik M, Harris LR. The relative timing of active and passive touch. Brain Res 1242: 54-58, 2008.
59. Gibson JJ. Observations on active touch. Psychol Rev 69: 477-491, 1962.
60. Klatzky RL, Lederman SJ. Stages of manual exploration in haptic object identification. Percept Psychophys 52: 661-670, 1992.
61. Lederman SJ, Klatzky RL. Haptic classification of common objects: knowledge-driven exploration. Cogn Psychol 22: 421-459, 1990.
62. Robles-De-La-Torre G. Comparing the role of lateral force during active and passive touch: lateral force and its correlates are inherently ambiguous cues for shape perception. Proc Eurohaptics: 1-6, 2002.
63. Robles-De-La-Torre G, Hayward V. Force can overcome object geometry in the perception of shape through active touch. Nature 412: 445-448, 2001.
64. Hollins M, Risner SR. Evidence for the duplex theory of tactile texture perception. Percept Psychophys 62: 695-705, 2000.
65. Moberg E. Aspects of Sensation in Reconstructive Surgery of the Upper Extremity. J Bone Joint Surg Am 46: 817-825, 1964.
66. Carey L, Macdonell R, Matyas TA. SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: a randomized controlled trial. Neurorehabil Neural Repair 25: 304- 313, 2011.
67. Krumlinde-Sundholm L, Eliasson AC. Comparing tests of tactile sensibility: aspects relevant to testing children with spastic hemiplegia. Dev Med Child Neurol 44: 604-612, 2002.
68. Klatzky RL, Loomis JM, Lederman SJ, Wake H, Fujita N. Haptic identification of objects and their depictions. Percept Psychophys 54: 170-178, 1993.
69. Lederman SJ, Klatzky RL. Haptic identification of common objects: effects of constraining the manual exploration process. Percept Psychophys 66: 618-628, 2004.
70. Melchior H, Vatine JJ, Weiss PL. Is there a relationship between light touch-pressure sensation and functional hand ability? Disabil Rehabil 29: 567-575, 2007.
71. Amirjani N, Ashworth NL, Olson JL, Morhart M, Chan KM. Discriminative validity and test-retest reliability of the Dellon-modified Moberg pick-up test in carpal tunnel syndrome patients. J Peripher Nerv Syst 16: 51-58, 2011.
72. Hunter JM, Schneider LH, Mackin EJ, Callahan AD, editors. Rehabilitation of the hand. 3 ed. CV Mosby Company, St Louis. 53-82 p, 1990.
73. Soreide K, Korner H, Soreide JA. Diagnostic accuracy and receiver-operating characteristics curve analysis in surgical research and decision making. Ann Surg 253: 27-34, 2011.
74. Kimmerle M, Mainwaring L, Borenstein M. The functional repertoire of the hand and its application to assessment. Am J Occup Ther 57: 489-498, 2003.
75. Fitinghoff H, Lindqvist B, Nygard L, Ekholm J, Schult ML. The ICF and postsurgery occupational therapy after traumatic hand injury. Int J Rehabil Res 34: 79-88, 2011.
76. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349: 1436-1442, 1997.
77. Hunter SM, Crome P. Hand function and stroke. Reviews in Clinical Gerontology 12: 68-81, 2002.
78. Duncan PW, Badke MB, editors. Stroke Rehabilitation: The Recovery of Motor Control. Year Book Medical Publishers, Chicago. 1988.
79. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 75: 394-398, 1994.
80. Wade DT, Langton-Hewer R, Wood VA, Skilbeck CE, Ismail HM. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry 46: 521-524, 1983.
81. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, et al. Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117: e25-146, 2008.
82. Trombly CA. Deficits of reaching in subjects with left hemiparesis: a pilot study. Am J Occup Ther 46: 887-897, 1992.
83. Johansson BB. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol Scand 123: 147-159, 2011.
84. Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther 46: 357-375, 1966.
85. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 7: 13- 31, 1975.
86. Uswatte G, Taub E, Morris D, Light K, Thompson PA. The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology 67: 1189-1194, 2006.
87. Nowak DA. The impact of stroke on the performance of grasping: usefulness of kinetic and kinematic motion analysis. Neurosci Biobehav Rev 32: 1439-1450, 2008.
88. Johansson RS, Hager C, Riso R. Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate. Exp Brain Res 89: 192-203, 1992.
89. Hermsdorfer J, Hagl E, Nowak DA, Marquardt C. Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol 114: 915-929, 2003.
90. Nowak DA, Grefkes C, Dafotakis M, Kust J, Karbe H, et al. Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke. Eur J Neurosci 25: 3173-3184, 2007.
91. Quaney BM, Perera S, Maletsky R, Luchies CW, Nudo RJ. Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke. Neurorehabil Neural Repair 19: 338-349, 2005.
92. Kim JS, Choi-Kwon S. Discriminative sensory dysfunction after unilateral stroke. Stroke 27: 677-682, 1996.
93. Augurelle AS, Smith AM, Lejeune T, Thonnard JL. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 89: 665-671, 2003.
94. Jeannerod M, Michel F, Prablanc C. The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain 107 ( Pt 3): 899-920, 1984.
95. Wolf SL. Electromyographic biofeedback applications to stroke patients. A critical review. Phys Ther 63: 1448-1459, 1983.
96. Wolf SL, Binder-MacLeod SA. Electromyographic biofeedback applications to the hemiplegic patient. Changes in lower extremity neuromuscular and functional status. Phys Ther 63: 1404-1413, 1983.
97. Honer J, Mohr T, Roth R. Electromyographic biofeedback to dissociate an upper extremity synergy pattern: a case report. Phys Ther 62: 299-303, 1982.
98. Wolf SL, Binder-MacLeod SA. Electromyographic biofeedback applications to the hemiplegic patient. Changes in upper extremity neuromuscular and functional status. Phys Ther 63: 1393-1403, 1983.
99. Kurillo G, Gregoric M, Goljar N, Bajd T. Grip force tracking system for assessment and rehabilitation of hand function. Technol Health Care 13: 137-149, 2005.
100. Kollen B, Kwakkel G, Lindeman E. Functional recovery after stroke: a review of current developments in stroke rehabilitation research. Rev Recent Clin Trials 1: 75-80, 2006.
101. Yancosek KE, Howell D. A narrative review of dexterity assessments. J Hand Ther 22: 258-269; quiz 270, 2009.
102. Gao KL, Ng SS, Kwok JW, Chow RT, Tsang WW. Eye-hand coordination and its relationship with sensori-motor impairments in stroke survivors. J Rehabil Med 42: 368-373, 2010.
103. Zachary RB, Holmes W. Primary suture of nerves. Surg Gynecol Obstet 82: 632-651, 1946.
104. Bell-Krotoski JA, Buford WL, Jr. The force/time relationship of clinically used sensory testing instruments. J Hand Ther 10: 297-309, 1997.
105. Carmeli E, Patish H, Coleman R. The aging hand. J Gerontol A Biol Sci Med Sci 58: 146-152, 2003.
106. Johansson RS, Lemon RN, Westling G. Time-varying enhancement of human cortical excitability mediated by cutaneous inputs during precision grip. J Physiol 481 ( Pt 3): 761- 775, 1994.
107. Schenker M, Burstedt MK, Wiberg M, Johansson RS. Precision grip function after hand replantation and digital nerve injury. J Plast Reconstr Aesthet Surg 59: 706-716, 2006.
108. Brodal. A. Neurological anatomy in relation to clinical medicine New York: Oxford Univ, 1981.
109. Glees P, Cole J. Ipsilateral representation in the cerebral cortex; its significance in relation to motor function. Lancet 1: 1191-1192, 1952.
110. Sunderland A, Bowers MP, Sluman SM, Wilcock DJ, Ardron ME. Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit. Stroke 30: 949-955, 1999.
111. Hermsdörfer J, Nowak DA, Lee A, Rost K, Timmann D, et al. The representation of predictive force control and internal forward models: evidence from lesion studies and brain imaging. Cogn Process 6: 48-58, 2005.
112. Rosen B, Dahlin LB, Lundborg G. Assessment of functional outcome after nerve repair in a longitudinal cohort. Scand J Plast Reconstr Surg Hand Surg 34: 71-78, 2000.
113. Cederlund R, Isacsson A, Lundborg G. Hand function in workers with hand-arm vibration syndrome. J Hand Ther 12: 16-24, 1999.
114. Uygur M, de Freitas PB, Jaric S. Frictional properties of different hand skin areas and grasping techniques. Ergonomics 53: 812-817, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-10-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-10-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw