系統識別號 U0026-1709201017595100
論文名稱(中文) 人類凝血酶調節素於上皮-間質轉化及腫瘤發生之研究
論文名稱(英文) Study of Thrombomodulin in Epithelial-Mesenchymal Transition and Tumorigenesis
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 99
學期 1
出版年 99
研究生(中文) 高遠忠
研究生(英文) Yuan-Chung Kao
學號 s5893106
學位類別 博士
語文別 英文
論文頁數 97頁
口試委員 指導教授-施桂月
中文關鍵字 上皮-間質轉化  人類凝血酶調節素  腫瘤發生 
英文關鍵字 epithelial-mesenchymal transition  thrombomodulin  tumorigenesis 
中文摘要 凝血酶調節素 (Thrombomodulin, TM)是一種鈣離子依賴性的黏著分子,在不同類型的癌症都已發現有表現量下降的情形。然而,凝血酶調節素在腫瘤發生過程低表現量的機制及對細胞作用尚未明確。本實驗中我們觀察到,凝血酶調節素與上皮細胞間質轉化轉錄因子Snail,在許多不同種類的癌症細胞株都呈現負相關的表現模式。另在HaCaT及A431細胞為研究對象,施以轉化生長因子 (transforming growth factor) 以及表皮生長因子(epidermal growth factor) 誘導上皮-間質轉化(epithelial-mesenchymal transition, EMT)的細胞模式中亦確認此一情形。我們證明Snail會與凝血酶調節素啟動子片段距離轉錄起始點之前-828至-823鹼基的特定序列 (CACCTG) 專一性的結合以抑制凝血酶調節素的表現。同時,我們以小髮夾RNA抑制凝血酶調節素的表現並建立凝血酶調節素表現量降低的穩定細胞株。在鈣離子轉換試驗中,凝血酶調節素表現量降低的穩定細胞株,其鈣黏著素E (E-cadherin) 與細胞間質beta索烴素 (beta-catenin) 的結合力降低,並且鈣黏著素E會堆積在細胞質當中。因此,降低凝血酶調節素表現量會影響鈣黏著素E的動態平衡。另一方面,傷口癒合以及腫瘤侵襲的細胞體外試驗結果顯示,凝血酶調節素表現量降低的穩定細胞株具有較強的細胞活動力。將此穩定細胞株以皮下注射的方式植入免疫缺陷的老鼠會誘發腫瘤的產生。我們更將小鼠的凝血酶調節素基因轉殖在凝血酶調節素表現量降低的穩定細胞株中,使得此細胞恢復類似上皮細胞的型態,同時增加鈣黏著素E與細胞間質beta索烴素的結合力。到目前為止,我們證明凝血酶調節素,為Snail調控的下游分子,在上皮-間質轉化過程中扮演維持上皮細胞型態並有抑制腫瘤發生之功能。
英文摘要 The expression of thrombomodulin (TM), a calcium-dependent adhesion molecule, is frequently down-regulated in various cancer types. However, the mechanism responsible for the low expression level of TM in tumorigenesis is unknown. Here, an inverse expression of TM and Snail was detected in different cancer cell lines. We further confirmed this inverse relation using epithelial-mesenchymal transition cell model in HaCaT and A431 cells. We demonstrated that Snail suppressed TM expression by binding to E-box (CACCTG) in TM promoter. Moreover, TM knockdown by short hairpin RNA disrupted E-cadherin-mediated cell junctions and contributed to tumorigenesis. In calcium switch assay, E-cadherin lost the ability to associate with beta-catenin and accumulated in cytoplasm in TM knockdown cells. Meanwhile, wound healing and invasive assays showed that TM knockdown promoted cell motility. A subcutaneous injection of TM knockdown transfectants into immunocompromised mice induced squamous cell carcinoma-like tumors. Besides, forced expression of murine TM in TM knockdown cells made the cells re-assume epithelial-like morphology and increased calcium-dependent association of E-cadherin and beta-catenin. In conclusion, TM, a novel downstream target of Snail in epithelial-mesenchymal transition, is required for maintaining epithelial morphology and functions as a tumor suppressor.
論文目次 I Abstract 1
II Chinese Abstract 2
III Acknowledgments 3
IV Content Table 4
V Abbreviations 9
VI Introduction 11
VI-1 Structure of Thrombomodulin 11
VI-2 Other Roles of TM beyond Anti-coagulation 13
VI-3 Regulatory Expression of TM 16
VI-4 Epithelial-Mesenchymal Transition 17
VI-5 The Association of TM with EMT 20
VII Materials and Methods 22
VII-1 Cell Cultures 22
VII-2 Constrcuts and Transfections 23
VII-3 SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis) 24
VII-4 Western Blotting 25
VII-5 Immuno-fluorescent Staining 27
VII-7 Reporter Gene Assay 30
VII-8 ChIP Assay 32
VII-9 Wound Healing Assay and Individual Cell Tracking 32
VII-10 Invasion Assay 33
VII-11 Co-immunoprecipitation Assay 34
VII-12 Cell Fractionation 34
VII-13 Tumorigenesis of TM Knockdown Transfectants in NOD-SCID Mice 35
VII-14 Immuno-histochemistry Staining 35
VII-15 Statistical Analysis 36
VIII Results 37
VIII-1 Inverse expression of TM and Snail 37
VIII-2 Snail directly suppresses TM and E-cadherin expression 38
VIII-3 Binding of Snail to TM promoter suppresses TM expression 38
VIII-4 TM knockdown induces E-cadherin and beta-catenin dissociation from cell membrane 39
VIII-5 TM knockdown abolishes E-cadherin-mediated cell-cell contact formation 40
VIII-6 TM knockdown promotes cell motility 41
VIII-7 TM knockdown induces SCC-like tumors 42
VIII-8 Forced mTM expression suppresses TM knockdown-induced morphology alteration and mesenchymal marker expression 43
VIII-9 TM directly interacts with actinin-4 43
IX Discussion 45
X References 51
XI Figures and Legends 60
Fig. 1 Down-regulation of TM in tumor cells associates with EMT 60
Fig. 2 Snail directly suppresses TM and E-cadherin expression 63
Fig. 3 Snail specifically binds to TM promoter 65
Fig. 4 TM is necessary for E-cadherin and beta-catenin to localize to cell membrane 67
Fig. 5 TM knockdown abolishes E-cadherin-mediated cell junction rebuilding 69
Fig. 6 TM knockdown increases cell motility and invasion 72
Fig. 7 TM knockdown induces SCC-like tumor 75
Fig. 8 Forced TM expression suppresses TM knockdown induced morphology alteration and mesenchymal markers expression 77
Fig. 9 Proposed role of TM in EMT process 81
Supplementary Fig. 1 TM knockdown enhanced cell permeability 83
Supplementary Fig. 2 TM directly interacted with actinin-4 84
Supplementary Fig. 3 Forced expression of mTM reverted TGF-beta1 and EGF induced cell morphology change 86
XII Tables 87
1 Short hairpin sequences specific to TM 87
2 Probe sequences of TM in EMSA 87
3 Primer sequences of ChIP assay 88
4 Cell lines phenotype 88
XIII Reagents, Drugs, and Chemicals 89
XIV Instruments 94
XV Resume 97
參考文獻 1 Esmon CT. The regulation of natural anticoagulant pathways. Science. 1987; 235: 1348-52.
2 Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S, Horiguchi S. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 1987; 6: 1891-7.
3 Petersen TE. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS letters. 1988; 231: 51-3.
4 Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 1988; 263: 9557-60.
5 Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern DM, Rosenberg RD, Ziegler R, Nawroth PP. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J. Clin. Invest. 1998; 101: 1301-9.
6 Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J. Exp. Med. 2002; 196: 565-77.
7 Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J. Biol. Chem . 2003; 278: 46750-9.
8 Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J. Biol. Chem. 1995; 270: 14477-84.
9 Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J. Biol. Chem. 1998; 273: 12135-9.
10 Tsiang M, Lentz SR, Sadler JE. Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J. Biol. Chem. 1992; 267: 6164-70.
11 Zushi M, Gomi K, Honda G, Kondo S, Yamamoto S, Hayashi T, Suzuki K. Aspartic acid 349 in the fourth epidermal growth factor-like structure of human thrombomodulin plays a role in its Ca(2+)-mediated binding to protein C. J. Biol. Chem. 1991; 266: 19886-9.
12 Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, Kazama M. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood. 1995; 86: 225-33.
13 Tohda G, Oida K, Okada Y, Kosaka S, Okada E, Takahashi S, Ishii H, Miyamori I. Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells. Arterioscler. Throm Vasc Biol . 1998; 18: 1861-9.
14 Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005; 111: 1627-36.
15 David-Dufilho M, Millanvoye-Van Brussel E, Topal G, Walch L, Brunet A, Rendu F. Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II. J. Biol. Chem. 2005; 280: 35999-6006.
16 Preissner KT, Koyama T, Muller D, Tschopp J, Muller-Berghaus G. Domain structure of the endothelial cell receptor thrombomodulin as deduced from modulation of its anticoagulant functions. Evidence for a glycosaminoglycan-dependent secondary binding site for thrombin. J. Biol. Chem. 1990; 265: 4915-22.
17 Ye J, Esmon CT, Johnson AE. The chondroitin sulfate moiety of thrombomodulin binds a second molecule of thrombin. J. Biol. Chem. 1993; 268: 2373-9.
18 Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr. Biol. 2004; 14: 236-41.
19 Takahashi Y, Hosaka Y, Niina H, Nagasawa K, Naotsuka M, Sakai K, Uemura A. Soluble thrombomodulin purified from human urine exhibits a potent anticoagulant effect in vitro and in vivo. Thromb. Haemostasis. 1995; 73: 805-11.
20 Conway EM, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J. Cell. Physiol. 1994; 158: 285-98.
21 Teasdale MS, Bird CH, Bird P. Internalization of the anticoagulant thrombomodulin is constitutive and does not require a signal in the cytoplasmic domain. Immunol. Cell. Biol. 1994; 72: 480-8.
22 Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, Kuo CH, Chang BI, Chang CF, Lin CH, Wong CH, Wu HL. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008; 112: 3661-70.
23 Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl. Acad. Sci. USA. 1994; 91: 8263-7.
24 Riethmacher D, Brinkmann V, Birchmeier C. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc. Natl. Acad. Sci. USA. 1995; 92: 855-9.
25 Hynes RO, Wagner DD. Genetic manipulation of vascular adhesion molecules in mice. J. Clin. Invest. 1996; 98: 2193-5.
26 Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. Natl. Acad. Sci. USA. 1995; 92: 850-4.
27 Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer res. 1995; 55: 4196-200.
28 Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y, Lentz SR. Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J. Clin. Invest. 1994; 93: 1846-51.
29 Matsushita Y, Yoshiie K, Imamura Y, Ogawa H, Imamura H, Takao S, Yonezawa S, Aikou T, Maruyama I, Sato E. A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone--thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma. Cancer letters. 1998; 127: 195-201.
30 Li YH, Shi GY, Wu HL. The role of thrombomodulin in atherosclerosis: from bench to bedside. Cardiovascular & hematological agents in medicinal chemistry. 2006; 4: 183-7.
31 Li YH, Hsieh CY, Wang DL, Chung HC, Liu SL, Chao TH, Shi GY, Wu HL. Remodeling of carotid arteries is associated with increased expression of thrombomodulin in a mouse transverse aortic constriction model. Thromb. haemostasis. 2007; 97: 658-64.
32 Li YH, Shi GY, Wu HL. Thrombomodulin in the treatment of atherothrombotic diseases. Frontiers in bioscience (Scholar edition). 2009; 1: 33-8.
33 Bernard GR, Ely EW, Wright TJ, Fraiz J, Stasek JE, Jr., Russell JA, Mayers I, Rosenfeld BA, Morris PE, Yan SB, Helterbrand JD. Safety and dose relationship of recombinant human activated protein C for coagulopathy in severe sepsis. Crit. care med. 2001; 29: 2051-9.
34 Brueckmann M, Hoffmann U, De Rossi L, Weiler HM, Liebe V, Lang S, Kaden JJ, Borggrefe M, Haase KK, Huhle G. Activated protein C inhibits the release of macrophage inflammatory protein-1-alpha from THP-1 cells and from human monocytes. Cytokine. 2004; 26: 106-13.
35 Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science. 2002; 296: 1880-2.
36 Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood. 1997; 89: 652-61.
37 Bajzar L, Jain N, Wang P, Walker JB. Thrombin activatable fibrinolysis inhibitor: not just an inhibitor of fibrinolysis. Crit. care med. 2004; 32: S320-4.
38 Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J. Exp. Med. 2002; 196: 565-77.
39 Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S, Yamamoto Y, Yamamoto H, Iino S, Taniguchi N, Maruyama I. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J. Clin. Invest. 2005; 115: 1267-74.
40 Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999; 285: 248-51.
41 Taniguchi N, Kawahara K, Yone K, Hashiguchi T, Yamakuchi M, Goto M, Inoue K, Yamada S, Ijiri K, Matsunaga S, Nakajima T, Komiya S, Maruyama I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis rheum. 2003; 48: 971-81.
42 Waugh JM, Li-Hawkins J, Yuksel E, Kuo MD, Cifra PN, Hilfiker PR, Geske R, Chawla M, Thomas J, Shenaq SM, Dake MD, Woo SL. Thrombomodulin overexpression to limit neointima formation. Circulation. 2000; 102: 332-7.
43 Calnek DS, Grinnell BW. Thrombomodulin-dependent anticoagulant activity is regulated by vascular endothelial growth factor. Exp. Cell Res. 1998; 238: 294-8.
44 Sperry JL, Deming CB, Bian C, Walinsky PL, Kass DA, Kolodgie FD, Virmani R, Kim AY, Rade JJ. Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ. Res. 2003; 92: 41-7.
45 Conway EM, Rosenberg RD. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol. Cell. Biol. 1988; 8: 5588-92.
46 Lo IC, Lin TM, Chou LH, Liu SL, Wu LW, Shi GY, Wu HL, Jiang MJ. Ets-1 mediates platelet-derived growth factor-BB-induced thrombomodulin expression in human vascular smooth muscle cells. Cardiovasc. Res. 2009; 81: 771-9.
47 Ramachandran A, Ranpura SA, Gong EM, Mulone M, Cannon GM, Jr., Adam RM. An Akt- and Fra-1-Dependent Pathway Mediates Platelet-Derived Growth Factor-Induced Expression of Thrombomodulin, a Novel Regulator of Smooth Muscle Cell Migration. Am. J. Pathol.
48 Sohn RH, Deming CB, Johns DC, Champion HC, Bian C, Gardner K, Rade JJ. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood. 2005; 105: 3910-7.
49 von der Ahe D, Nischan C, Kunz C, Otte J, Knies U, Oderwald H, Wasylyk B. Ets transcription factor binding site is required for positive and TNF alpha-induced negative promoter regulation. Nucleic Acids Res. 1993; 21: 5636-43.
50 Wong HR, Ryan M, Wispe JR. Stress response decreases NF-kappaB nuclear translocation and increases I-kappaBalpha expression in A549 cells. J. Clin. Invest. 1997; 99: 2423-8.
51 Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev. 2003; 120: 1351-83.
52 Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004; 118: 277-9.
53 Barbour W, Saika S, Miyamoto T, Ohkawa K, Utsunomiya H, Ohnishi Y. Expression patterns of beta1-related alpha integrin subunits in murine lens during embryonic development and wound healing. Curr. Eye Res. 2004; 29: 1-10.
54 Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J. Clin. Invest n. 2009; 119: 1420-8.
55 Lioni M, Brafford P, Andl C, Rustgi A, El-Deiry W, Herlyn M, Smalley KS. Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells. Am. J. Pathol. 2007; 170: 709-21.
56 Yuan Z, Wong S, Borrelli A, Chung MA. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation. Biochem. Biophys. Res. Commun. 2007; 362: 740-6.
57 Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell. Biol. 2003; 4: 657-65.
58 Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl. Acad. Sci. USA. 2003; 100: 8621-3.
59 Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, Moses HL. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res. 2004; 6: R215-31.
60 Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J. Cell Biochem. 2005; 95: 918-31.
61 Watabe M, Matsumoto K, Nakamura T, Takeichi M. Effect of hepatocyte growth factor on cadherin-mediated cell-cell adhesion. Cell Struct. Funct. 1993; 18: 117-24.
62 Shiozaki H, Kadowaki T, Doki Y, Inoue M, Tamura S, Oka H, Iwazawa T, Matsui S, Shimaya K, Takeichi M, et al. Effect of epidermal growth factor on cadherin-mediated adhesion in a human oesophageal cancer cell line. Br. J. Cancer. 1995; 71: 250-8.
63 Conacci-Sorrell M, Zhurinsky J, Ben-Ze'ev A. The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest. 2002; 109: 987-91.
64 Shiozaki H, Tahara H, Oka H, Miyata M, Kobayashi K, Tamura S, Iihara K, Doki Y, Hirano S, Takeichi M, et al. Expression of immunoreactive E-cadherin adhesion molecules in human cancers. Am. J. Pathol. 1991; 139: 17-23.
65 Pignatelli M, Ansari TW, Gunter P, Liu D, Hirano S, Takeichi M, Kloppel G, Lemoine NR. Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J. Pathol. 1994; 174: 243-8.
66 Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A. A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J. Cell. Biol. 1991; 115: 517-33.
67 Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J. Cell. Sci. 2003; 116: 499-511.
68 Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. cell biology. 2000; 2: 76-83.
69 Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004; 18: 1131-43.
70 Becker KF, Rosivatz E, Blechschmidt K, Kremmer E, Sarbia M, Hofler H. Analysis of the E-cadherin repressor Snail in primary human cancers. Cells, tissues, organs. 2007; 185: 204-12.
71 Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2000; 2: 84-9.
72 Ogawa H, Yonezawa S, Maruyama I, Matsushita Y, Tezuka Y, Toyoyama H, Yanagi M, Matsumoto H, Nishijima H, Shimotakahara T, Aikou T, Sato E. Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 2000; 149: 95-103.
73 Kim SJ, Shiba E, Ishii H, Inoue T, Taguchi T, Tanji Y, Kimoto Y, Izukura M, Takai S. Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer Res. 1997; 17: 2319-23.
74 Hanly AM, Redmond M, Winter DC, Brophy S, Deasy JM, Bouchier-Hayes DJ, Kay EW. Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival. Br. J. Cancer. 2006; 94: 1320-5.
75 Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988; 106: 761-71.
76 Bracke ME, Depypere H, Labit C, Van Marck V, Vennekens K, Vermeulen SJ, Maelfait I, Philippe J, Serreyn R, Mareel MM. Functional downregulation of the E-cadherin/catenin complex leads to loss of contact inhibition of motility and of mitochondrial activity, but not of growth in confluent epithelial cell cultures. Eur. J. Cell Biol. 1997; 74: 342-9.
77 Mandal M, Myers JN, Lippman SM, Johnson FM, Williams MD, Rayala S, Ohshiro K, Rosenthal DI, Weber RS, Gallick GE, El-Naggar AK. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer. 2008; 112: 2088-100.
78 Furuta J, Kaneda A, Umebayashi Y, Otsuka F, Sugimura T, Ushijima T. Silencing of the thrombomodulin gene in human malignant melanoma. Melanoma Res. 2005; 15: 15-20.
79 Kuphal S, Palm HG, Poser I, Bosserhoff AK. Snail-regulated genes in malignant melanoma. Melanoma Res. 2005; 15: 305-13.
80 Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer. 2007; 7: 415-28.
81 Qin Y, Capaldo C, Gumbiner BM, Macara IG. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 2005; 171: 1061-71.
82 Lorger M, Moelling K. Regulation of epithelial wound closure and intercellular adhesion by interaction of AF6 with actin cytoskeleton. J. Cell Sci. 2006; 119: 3385-98.
83 Mizutani H, Hayashi T, Nouchi N, Ohyanagi S, Hashimoto K, Shimizu M, Suzuki K. Functional and immunoreactive thrombomodulin expressed by keratinocytes. J. Invest. Dermatol. 1994; 103: 825-8.
84 Hanly AM, Hayanga A, Winter DC, Bouchier-Hayes DJ. Thrombomodulin: tumour biology and prognostic implications. Eur. J. Surg. Oncol. 2005; 31: 217-20.
85 Iino S, Abeyama K, Kawahara K, Yamakuchi M, Hashiguchi T, Matsukita S, Yonezawa S, Taniguchi S, Nakata M, Takao S, Aikou T, Maruyama I. The antimetastatic role of thrombomodulin expression in islet cell-derived tumors and its diagnostic value. Clin. Cancer Res. 2004; 10: 6179-88.
86 Broderick MJ, Winder SJ. Spectrin, alpha-actinin, and dystrophin. Adv. Protein Chem. 2005; 70: 203-46.
87 Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskel. 2004; 58: 104-11.
88 Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H, Yamada Y, Chiba H, Hirohashi S. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell Biol. 1998; 140: 1383-93.
89 Yamagata N, Shyr Y, Yanagisawa K, Edgerton M, Dang TP, Gonzalez A, Nadaf S, Larsen P, Roberts JR, Nesbitt JC, Jensen R, Levy S, Moore JH, Minna JD, Carbone DP. A training-testing approach to the molecular classification of resected non-small cell lung cancer. Clin. Cancer Res. 2003; 9: 4695-704.
90 Kikuchi S, Honda K, Tsuda H, Hiraoka N, Imoto I, Kosuge T, Umaki T, Onozato K, Shitashige M, Yamaguchi U, Ono M, Tsuchida A, Aoki T, Inazawa J, Hirohashi S, Yamada T. Expression and gene amplification of actinin-4 in invasive ductal carcinoma of the pancreas. Clin. Cancer Res. 2008; 14: 5348-56.
91 Hayashida Y, Honda K, Idogawa M, Ino Y, Ono M, Tsuchida A, Aoki T, Hirohashi S, Yamada T. E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res. 2005; 65: 8836-45.
  • 同意授權校內瀏覽/列印電子全文服務,於2013-09-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-16起公開。

  • 如您有疑問,請聯絡圖書館