進階搜尋


下載電子全文  
系統識別號 U0026-1708202015264800
論文名稱(中文) 應變計應用於底床載輸砂率之實驗研究
論文名稱(英文) The experimental study on bed load transport rate by using strain gauge
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 張彥智
研究生(英文) Yen-Chih Chang
學號 N86071057
學位類別 碩士
語文別 中文
論文頁數 76頁
口試委員 指導教授-謝正倫
口試委員-李明熹
口試委員-臧運忠
中文關鍵字 應變片  底床載輸砂量 
英文關鍵字 strain gauge  bed load transport 
學科別分類
中文摘要 因地球暖化影響,氣候變遷,短延時強降雨的型態頻率也愈來愈高,這使得山區內的土砂運移的情況更為劇烈。因此,如何有效的、持續的觀測河川內泥沙運移的情形,更是重要的一環。
以往對於底床泥沙的推估,有許多種方法,其一為經驗公式以及現地調查。對於經驗公式而言,根據其水理條件的不同解算出不同的輸砂量,且因各個實驗場地的尺度不同,往往在計算上的精確度也會有差異,而對於採樣法,即直接採取河床中的水樣,利用比重法求得單位水體所蘊含的泥砂量,此法雖準確性高,但無法持續性、且在高流量的情況下測量也有一定的危險性在。因此,連續性、自動化的觀測方法則可透過間接式的底床監測設備,例如水聲計、地聲計等設備,進行底床載輸砂量的觀測,而地聲計較適用於粒徑較大的環境,例如:卵礫石的大型河川,而其中水聲計可以透過音壓-動量法來推估粒徑大小,但在動量過大時,音壓的變化趨於緩和,進而導致輸砂量的低估,另外,當輸砂量過大時,也有飽和的限制。故本文將重點放在如何透過其他方法來推估顆粒的粒徑大小,希望能效仿水聲計的方法,尋找一個物理量能量化顆粒撞擊時的大小,且量測範圍能超越水聲計的動量上限。
本研究藉由應變原理,來探討顆粒撞擊後,所產生的變形量,與動量之間的關係,從實驗結果可知透過合成橡膠墊或是鋼板都可以突破水聲計的動量上限(10g*m/s),但卻因撞擊位置離開中心點時,應變量會低估,故在多顆粒實驗時考慮不同的條件下所推算出來的觀測顆粒重量與實際顆粒重量做比較,從結果可以看出,在考慮撞擊位置以及餘波的條件下,觀測重量與實際重量的平均誤差最小。
英文摘要 Due to the effects of global warming and climate change, the frequency of heavy rainfall patterns has become higher and higher, which makes the movement of soil and sediment in mountainous areas more intense. Therefore, how to effectively and continuously observe the movement of sediment in the river is very important.
In the past, there were many methods for estimating bed-load discharge, one of which was empirical formula and field survey. As for the empirical formula, different sediment conveyance amounts can be calculated according to the different conditions, and because of the different scales of each experimental site, the calculation accuracy will be different. For the sampling method, the water sample in the river bed, the specific gravity method is used to obtain the amount of sediment contained in the unit water volume. Although this method is highly accurate, it is not sustainable, and it is dangerous to measure under high flow conditions. Therefore, continuous and automated observation methods can be used to observe the amount of sediment carried on the bed-load through indirect bed monitoring equipment, such as hydrophone, geophone. Geophone is suitable for larger particle size. Large particle size, such as large gravel rivers, where the hydrophone can estimate the particle size through the sound pressure-momentum method, but when the momentum is over 10(g*m/s), the slope of sound pressure tends to ease , which leads to the amount of sediment transported. In addition, when the amount of sediment transported is too large, there is also a saturation limit. Therefore, this article focuses on how to estimate the particle size through other methods, hoping to imitate the method of hydrophone, find a physical quantity to quantify the particle size when it impacts, and the measurement range can exceed the momentum of the hydrophone.
This study uses the principle of strain to explore the relationship between the amount of deformation and momentum generated by particles after impact. The experimental results show that the limit of momentum of the hydrophone can be broken through synthetic rubber pads or steel plates, but the strain will be underestimated when the impact position is away from the center point. Therefore, in the multi-particle experiment, the observed particle weight calculated under different conditions is compared with the actual particle weight. It can be seen from the result that considering the impact position and different methods of taking strain values, the average error between the observed weight and the actual weight is the smallest.

論文目次 摘要 I
Abstract II
致謝 VII
目錄 VIII
表目錄 X
圖目錄 XI
符號說明 XV
第一章、緒論 1
1-1.研究背景 1
1-2.研究目的 2
1-3.研究流程 4
第二章、文獻回顧 6
2-1.地聲計 12
2-2.水聲計 17
2-3.總結 25
第三章、研究方法 26
3-1.應變片原理 27
3-2.實驗設備 28
3-3. 實驗配置 31
3-4.受撞物體之材質 33
3-4-1.SU304不鏽鋼 33
3-4-2.合成橡膠 34
3-5.實驗方法 35
3-5-1.單顆粒實驗方法 35
3-5-2.多顆粒實驗方法 38
3-6.訊號處理 40
3-6-1.單顆粒撞擊之應變量訊號處理 41
3-6-2.多顆粒撞擊之應變量訊號處理 44
3-7.百分比誤差 47
第四章、實驗結果與討論 48
4-1.不同材質之比較 49
4-1-1.鋼板(su304) 49
4-1-2.合成橡膠墊 50
4-2.單顆粒撞擊 51
4-2-1.應變與動量之關係 51
4-2-2.餘波效應 54
4-2-3.重量與顆粒數之比較 55
4-2-4.相同距離方向不同 56
4-2-5.不同撞擊位置對於應變量的影響 56
4-3.多顆粒撞擊 62
4-3-1.不考慮撞擊位置及未考慮餘波效應 62
4-3-2.考慮撞擊點條件及未考慮餘波效應 63
4-3-3.考慮撞擊位置及考慮餘波效應 68
4-3-4.輸砂率及應變率之比較 69
第五章、結論與建議 70
5-1.結論 70
5-2.建議 73
參考文獻 74

參考文獻 1.Ashida, K., & Michiue, M. (1972, October). Study on hydraulic resistance and bed-load transport rate in alluvial streams. Proceedings of the Japan Society of Civil Engineers (Vol. 1972, No. 206, pp. 59-69).
2.Bunte, K., Abt, S. R., Potyondy, J. P., & Ryan, S. E. (2004). Measurement of Coarse Gravel and Cobble Transport Using Portable Bedload Traps. Journal of Hydraulic Engineering, 130(9), 879-893.
3.Goto, K., Itoh, T., Nagayama, T., Kasai, M., & Marutani, T. (2014). Experimental and theoretical tools for estimating bedload transport using a Japanese pipe hydrophone. International Journal of Erosion Control Engineering, 7(4), 101-110.
4.Mao, L., Carrillo, R., Escauriaza, C., & Iroume, A. (2016). Flume and
field-based calibration of surrogate sensors for monitoring bedload
transport. Geomorphology, 253, 10-21.
5.Mizuyama, T., Nonaka, M., & Nonaka, N. (1996). Observation of sediment discharge rate using a hydrophone. J. Jap. Soc. of Erosion Control Eng, 49(4), 34-37.
6.Bedload monitoring system in Japanese mountain rivers. US Geological Survey Scientific Investigations Report, 5091, 296-318.
7.Mizuyama, T., Oda, A., Laronne, J. B., Nonaka, M., & Matsuoka, M. (2010). Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload. US Geological Survey Scientific Investigations Report, 5091, 319-335
8.Rickenmann, D., Turowski, J. M., Fritschi, B., Klaiber, A., & Ludwig, A. (2012). Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surface Processes and
Landforms, 37(9), 1000-1011.
9.Rickenmann, D., Turowski, J. M., Fritschi, B., Wyss, C., Laronne, J., Barzilai, R., . . . Habersack, H. (2014). Bedload transport measurements with impact plate geophones: comparison of sensor calibration in different gravel-bed streams. Earth Surface Processes and Landforms, 39(7), 928-942.
10.Rickenmann, D. (2017). Bed-Load Transport Measurements with Geophones and Other Passive Acoustic Methods. Journal of Hydraulic Engineering, 143(6), 03117004
11.Rickenmann, D. (2017). Bed-Load Transport Measurements with Geophones and Other Passive Acoustic Methods. Journal of Hydraulic Engineering, 143(6), 03117004.
12.Sawai, K. (1990). Techniques for sediment discharge measurement in laboratories.
13.Taniguchi, S., Itakura, T., Miyamoto, K., Kurihara, J. (1992). A new acoustic sensor for sediment discharge measurement. Erosion and Sediment Transport Monitoring Programmes in River Basins, no. 210, 1992
14.Tsutsumi, D., Fujita, M., & Nonaka, M. (2018). Transport measurement with a horizontal and a vertical pipe microphone in a mountain stream: taking account of particle saltation. Earth Surface Processes and Landforms, 43(5), 1118-1132.
15.Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M., Weitbrecht, V., and Boes, R. M. (2014). “Bedload grain size estimation from the indirect monitoring of bedload transport with Swiss plate geophones at the Erlenbach stream.” Proc., Int. Riverflow Conf., Lausanne, Switzerland, 1907–1912.
16.Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M., Weitbrecht, V., & Boes, R. M. (2016a). Measuring Bed Load Transport Rates by Grain-Size Fraction Using the Swiss Plate Geophone Signal at the Erlenbach. Journal of Hydraulic Engineering, 142(5), 04016003.
17.Wyss, C. R., Rickenmann, D., Fritschi, B., Turowski, J. M., Weitbrecht, V., & Boes, R. M. (2016b). Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 1. Impulse counts and particle size identification. Water Resources Research, 52(10), 7744-7759.
18.栗原淳一, 宮本邦明. (1992). 音響を利用した流砂量計測装置について. 砂防学会誌, 44(5), 26-31.
19.成大防災中心(2015),集水區河道土砂流出量觀測系統設置及研究
20.程運達(2009),「河砂運移調查及量測技術之研究」,經濟部水利署水利規劃試驗所
21.劉佳運(2018),「水聲計應用於底床載輸砂之監測-以油礦溪為例」成功大學水利及海洋工程學系學位論文
22.蔡壄川(2019),「水聲計在底床輸砂率監測中的應用」成功大學水利及海洋工程學系學位論文
23.詹錢登(2018),泥沙運行學,五南圖書出版公司
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw