進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1708201912493800
論文名稱(中文) 以原子層沉積法製備氧化鋁鉿閘極介電層及表面氮電漿處理之氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體
論文名稱(英文) AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Atomic Layer Deposited HfAlO Gate Dielectric and Nitrogen Plasma Treatment
校院名稱 成功大學
系所名稱(中) 奈米積體電路工程碩士學位學程
系所名稱(英) MS Degree Program on Nano-Integrated Circuit Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 楊舜凱
研究生(英文) Shun-Kai Yang
學號 Q76064076
學位類別 碩士
語文別 英文
論文頁數 104頁
口試委員 指導教授-王永和
口試委員-洪茂峰
口試委員-施博文
口試委員-楊證富
口試委員-劉安鴻
中文關鍵字 氮化鋁鎵/氮化鎵  高電子遷移率電晶體  表面氮電漿處理  原子層沉積法  氧化鋁鉿  閘極場板結構 
英文關鍵字 AlGaN/GaN  high electron mobility transistor (HEMT)  nitrogen plasma treatment  Atomic Layer Deposited (ALD)  HfAlO  gate field plate 
學科別分類
中文摘要 氮化鋁鎵/氮化鎵高電子遷移率電晶體,因其具有高飽和電子速度、高崩潰電場及高載子濃度的優異特性,因此它被認為會成為取代矽成為下一代的功率元件的材料。在本實驗中,閘極場板結構被用來提升元件的崩潰電壓。而為了減少閘極漏電流,我們以原子層沉積法沉積氧化鋁鉿來作為閘極介電層。此外,我們亦使用氮電漿來對蝕刻過後的表面進行處理以改善元件表面品質。本實驗之以原子層沉積法製備氧化鋁鉿閘極介電層及表面氮電漿處理之氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體在閘極5 V時的最大汲極電流為855 mA/mm,最大轉導值為118 mS/mm,次臨界擺幅與電流開關比分別為90 mV/dec與1.8 × 109。閘極漏電流有效地被抑制住來到了1.25 × 10-7 mA/mm,三端的崩潰電壓也提升到了195 V。
英文摘要 AlGaN/GaN high-electron-mobility transistors (HEMTs) are considered to be a dominant candidate for post-Si next generation power applications due to their impressive performance, such as high saturation electron velocity, high breakdown electric field and high carrier density. In this work, gate field plate is used to increase the device’s breakdown voltage. In order to reduce gate leakage current, ALD deposited HfAlO is used as gate dielectric. In addition, nitrogen plasma is used to improve the surface quality of the sample. In this work, the AlGaN/GaN HEMTs with ALD HfAlO gate dielectric and nitrogen plasma treatment achieve a maximum drain current of 855 mA/mm at VG = 5 V. The transfer characteristics show a maximum transconductance of 118 mS/mm, a subthreshold swing of 90 mV/dec and an on/off ratio of 1.8 × 109. The gate leakage current is 1.25 × 10-7 mA/mm at VG = -12 V and the three-terminal breakdown voltage is 195 V.
論文目次 中文摘要 I
Abstract III
CONTENTS VII
List of Table IX
List of Figure IX
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivation 5
1-3 Organization 9
Chapter 2 AlGaN/GaN HEMTs 10
2-1 Lattice structure 10
2-2 Spontaneous polarization 12
2-3 Piezoelectric polarization 14
2-4 Formation of two-dimensional electron gas 17
Chapter 3 Experiments and Device Fabrication 20
3-1 Experimental Equipment 20
3-1-1 Spin Coater 20
3-1-2 Oven and Hot plate 20
3-1-3 Mask Aligner 21
3-1-4 ICP Etching System 21
3-1-5 Electron Beam Evaporator 22
3-1-6 Rapid Thermal Annealing System 22
3-1-7 Electron Beam Lithography 23
3-1-8 Atomic Layer Deposition System 23
3-1-9 Semiconductor analyzer 24
3-2 Properties of HfAlO 30
3-3 Fabrication Process 33
3-3-1 Fabrication of the MOSHEMT 34
3-3-1-1 Mesa isolation 34
3-3-1-2 Source and drain ohmic contact 35
3-3-1-3 Gate Recess structure 36
3-3-1-4 Nitrogen Plasma treatment 37
3-3-1-5 Deposition of the Gate Oxide Layer 37
3-3-1-5-1 HfO2 layer 37
3-3-1-5-2 HfAlO layer 37
3-3-1-6 Schottky Gate Contact and Gate Field Plate 38
3-3-1-7 Schematic Procedures 40
3-3-2 Fabrication of multi-finger structure MOSHEMT (Lg = 0.5 μm, Wg = 5.5 mm, 12.5 mm, 21.5 mm) 43
3-3-2-1 Zero mask alignment 43
3-3-2-2 Mesa isolation 44
3-3-2-3 Source and drain ohmic contact 45
3-3-2-4 Ohmic Contact PAD 46
3-3-2-5 Gate Recess structure 47
3-3-2-6 Nitrogen Plasma treatment 48
3-3-2-7 Deposition of Gate Oxide Layer 48
3-3-2-8 Schottky Gate Contact and Gate Field Plate 49
3-3-2-9 Schematic Procedures 50
Chapter 4 Results and Discussion 54
4-1 Thermal stability of HfO2 and HfAlO 54
4-1-1 Transmission Electron Microscopy of HfO2 54
4-1-2 Transmission Electron Microscopy of HfAlO 57
4-1-3 Gate Leakage Current of HfO2 and HfAlO with Different PDA Temperatures 64
4-2 Performance of Nitrogen Plasma Treatment 66
4-3 Performance of Gate Field Plate 69
4-4 Performance of the MOSHEMT (Lg = 0.5μm, Wg = 100μm) 70
4-4-1 Saturation Drain Current 70
4-4-2 Transfer Characteristics 73
4-4-3 Subthreshold Swing and On-Off Ratio 75
4-4-4 Gate Leakage Current 77
4-4-5 Pulse I-V Characteristics 79
4-4-6 Off-State Breakdown Voltage 82
4-4-7 Capacitance Measurement 83
4-4-8 Cutoff Frequency and Maximum Oscillation Frequency 87
4-4-9 Flicker Noise 89
Chapter 5 Conclusion 91
Chapter 6 Future Work 95
References 96
參考文獻 [1]Jie Hu, Yuhao Zhang, Min Sun, Daniel Piedra, Nadim Chowdhury, Tomás Palacios, “Materials and processing issues in vertical GaN power electronics,” Materials Science in Semiconductor Processing 78, 2018.
[2]Tyler J. Flack, Bejoy N. Pushparakan, and Stephen B. Bayne, “GaN Technology for Power Electronic Applications: A Review,” Journal of Electronic Materials, Vol. 45, No. 6, 2016.
[3]Mohamed Alsharef, Max Christiansen, Ralf Granzner, Erdin Ture, Rüdiger Quay, “RF Performance of Trigate GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 63, no. 11, November 2016.
[4] Lester F. Eastman and U.K. Mishra, “The toughest transistor yet GaN transistors,” IEEE Spectrum, vol. 39, no. 5, pp. 28-33, May 2002.
[5]Mina Rais-Zadeh, Vikrant Jayant Gokhale, Azadeh Ansari, Marc Faucher, Didier Théron, Yvon Cordier, and Lionel Buchaillot, “Gallium Nitride as an Electromechanical Material,” Journal of Microelectromechanical Systems, vol. 23, no. 6, December 2014.
[6]B. JAYANT BALIGA, “Power Semiconductor Device Figure of Merit for High-Frequency Applications,” IEEE Electron Device Letters, vol. 10, no. 10, October 1989.
[7]Wang Jianhui, Wang Xinhua, Pang Lei, Chen Xiaojuan, Jin Zhi, and Liu Xinyu, “Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs,” Journal of Semiconductors, Vol. 33, No. 9, September 2012.
[8]Yang Liyuan, Ai Shan, Chen Yonghe, Cao Mengyi, Zhang Kai, and Hao Yue, “A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors,” Journal of Semiconductors, Vol. 34, No. 7, September 2013.
[9]CUI Lei, WANG Quan, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, JIANG Li-Juan, “A Novel Multi-Finger Gate Structure of AlGaN/GaN High Electron Mobility Transistor,” Chinese Physics Letters, Vol. 32, No. 5, 2015.
[10]Shreepad Karmalkar and Umesh K. Mishra, “Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,” IEEE Transactions on Electron Devices, vol. 48, no. 8, August 2001.
[11]S. C. Jain, M.Willander, J. Narayan, R. Van Overstraeten, “III–nitrides : Growth, characterisation, and properties,” Appl. Phys. Rev., vol. 87, p. 965, 2000.
[12]Keith Benson, “GaN Breaks Barriers—RF Power Amplifiers Go Wide and High,” Analog Dialogue 51-09, September 2017.
[13]Xiangdong Li, Marleen Van Hove, Ming Zhao, Karen Geens, “200 V Enhancement-Mode p-GaN HEMTs Fabricated on 200 mm GaN-on-SOI with Trench Isolation for Monolithic Integration,” IEEE Electron Device Letters, vol. 38, no. 7, July 2017.
[14]Hilt et al., “Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN buffer”, Proc. ISPSD, p. 347, 2010.
[15]Yunlong He, Minhan Mi, Chong Wang, Xuefeng Zheng, “Enhancement-Mode AlGaN/GaN Nanowire Channel High Electron Mobility Transistor with Fluorine Plasma Treatment by ICP”, IEEE Electron Device Letters, vol. 38, no. 10, October 2017.
[16]Kevin J. Chen, L. Yuan, M. J. Wang, H. Chen, “Physics of Fluorine Plasma Ion Implantation for GaN Normally-off HEMT Technology”, International Electron Devices Meeting, 2011.
[17]Ting-En Hsieh, Edward Yi Chang, Yi-Zuo Song, Yueh-Chin Lin, “Gate Recessed Quasi-Normally OFF Al2O3/AlGaN/GaN MIS-HEMT with Low Threshold Voltage Hysteresis Using PEALD AlN Interfacial Passivation Layer”, IEEE Electron Device Letters, vol. 35, no. 7, July 2014.
[18]Albert Colón, Junxia Shi, “High-k insulating materials for AlGaN/GaN metal insulator semiconductor heterojunction field effect transistors”, Solid-State Electronics 99, pp. 25–30, 2014.
[19]Ki-Won Kim, Sung-Dal Jung, Dong-Seok Kim, “Effects of TMAH Treatment on Device Performance of Normally Off Al2O3/GaN MOSFET”, IEEE Electron Device Letters, vol. 32, no. 10, October 2011.
[20]Young Jun Yoon, Jae Hwa Seo, Min Su Cho, “TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs”, Solid-State Electronics, 2016.
[21]S. C. Liu, G. M. Dai, and E. Y. Chang, “Improved Reliability of GaN HEMTs Using N2 Plasma Surface Treatment”, IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, 2015.
[22]Zhihua Doni, Ronghui Hao, Zhili Zhang, “Impact of N-Plasma Treatment on The Current Collapse of AlGaN/GaN HEMTS”, ICSICT, 2014.
[23]Shih-Chien Liu, Bo-Yuan Chen, Yueh-Chin Lin, “GaN MIS-HEMTs with Nitrogen Passivation for Power Device Applications”, IEEE Electron Device Letters, vol. 35, no. 10, October 2014.
[24]F. Husna, “High-Temperature Performance of AlGaN/GaN MOSHEMT with SiO2 Gate Insulator Fabricated on Si (111) Substrate”, IEEE Transactions on Electron Devices, vol. 59, no. 9, September 2012.
[25]N. Tsurumi et al., “AlN passivation over AlGaN/GaN HFETs for surface heat spreading,” IEEE Trans. Electron Devices, vol. 57, no. 5, pp. 980–985, May 2010.
[26]S. Huang et al., “Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 516–518, Apr. 2012.
[27]Gourab Dutta, Student Member, Nandita DasGupta, Amitava DasGupta, “Effect of Sputtered-Al2O3 Layer Thickness on the Threshold Voltage of III-Nitride MIS-HEMTs,” IEEE Transactions on Electron Devices, vol. 63, no. 4, April 2016.
[28]H. Zhou, X. Lou, S. B. Kim, K. D. Chabak, R. G. Gordon, and P. D. Ye, Enhancement-mode AlGaN/GaN fin-MOSHEMTs on Si substrate with atomic layer epitaxy MgCaO,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1294–1297, Sep. 2017.
[29]Fu-Chun Yang, Cheng-Yu Huang, Shun-Kai Yang, Jhan-Gao Wu, “Normally-off AlGaN/GaN Metal–Oxide Semiconductor High Electron Mobility Transistors with RF-Sputtered Hafnium Oxide,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2018.
[30]Chia-Ming Chu, Jhang-Gao Wu, Cheng-Yu Huang, Shun-Kai Yang, “Investigation of Multi-Mesa Channel AlGaN/GaN MOSHEMTs by Atomic Layer Deposition,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2018.
[31]Young-Chul Byun, Jae-Gil Lee, Xin Meng, Joy S. Lee, “Low temperature (100 oC) atomic layer deposited-ZrO2 for recessed gate GaN HEMTs on Si,” Applied Physics Letters 111, 082905 (2017).
[32]Sichao Li, Qianlan Hu, Xin Wang, Tiaoyang Li, “Improved Interface Properties and Dielectric Breakdown in Recessed AlGaN/GaN MOSHEMTs Using HfSiOx as Gate Dielectric,” IEEE Electron Device Letters, vol. 40, no. 2, February 2019.
[33]T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai, and Y. H. Wang, “AlGaN/GaN MOSHEMTs with Liquid-Phase Deposited TiO2 as Gate Dielectric,” IEEE Trans. on Electronic Devices, vol.56, no.12, pp. 2911-2916, Dec. 2009.
[34]Lingyan Shen, Dongliang Zhang, Xinhong Cheng, “Performance Improvement and Current Collapse Suppression of Al2O3/AlGaN/GaN HEMTs Achieved by Fluorinated Graphene Passivation,” IEEE Electron Device Letters, vol. 38, no. 5, May 2017.
[35]C. C. Hu, C. A. Chiu, J. X. Xu, T. Y. Wu, P. W. Sze, and Y. H. Wang, “Liquid-phase-deposited high dielectric zirconium oxide for metal-oxide-semiconductor high electron mobility transistors,” Vacuum, vol. 118, pp. 142-146, Aug. 2015.
[36]J. Robertsona and B. Falabretti, “Band offsets of high K gate oxides on III-V semiconductors,” Journal of Applied Physics 100, 014111, 2006.
[37]Zenji Yatabe, Joel T Asubar and Tamotsu Hashizume, “Insulated gate and surface passivation structures for GaN-based power transistors,” J. Phys. D: Appl. Phys. 49, 2016.
[38]Hanada T., “Basic Properties of ZnO, GaN, and Related Materials,” Advances in Materials Research, vol 12. Springer, Berlin, Heidelberg.
[39]Sukit Limpijumnong and Walter R. L. Lambrecht, “Theoretical study of the relative stability of wurtzite and rocksalt phases in MgO and GaN,” Physical Review B, Volume 63, 104103, 14 February 2001.
[40]Michael E. Levinshtein, Sergey L. Rumyantsev, Michael S. Shur, “Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe,” February 2001.
[41]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R.Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics 85, 3222, 1999.
[42]Fabio Bernardini and Vincenzo Fiorentini, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, no. 16, p. 56, Oct. 1997.
[43]Ⅲ族氮化物的極化效應
Available: http://www.ganhemt.com/jish/117.html
[44]Walter Schottky Institute, TU-Munich, Am Coulombwall, “Polarization Induced Effects in AlGaN/GaN Heterostructures,” ACTA PHYSICA POLONICA A, vol. 98, no. 3, 2000.
[45]Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt, “Accurate calculation of polarization-related quantities in semiconductors,” Physical Review B, vol. 63, April 2001.
[46]AlGaN/GaN異質結構二維電子氣的產生原理
Available: http://www.ganhemt.com/jish/118.html
[47]He Xiao-Guang, Zhao De-Gang, Jiang De-Sheng, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chin. Phys. B Vol. 24, No. 6, 10 April 2015.
[48]Introduction to Electron Beam Lithography
Available:http://www.optik.unierlangen.de/odem/download/v43/v43_electron_beam_lithography.pdf
[49]W. J. Zhu, T. Tamagawa, “Effect of Al Inclusion in HfO2 on the Physical and Electrical Properties of the Dielectrics,” IEEE Electron Device Letters, vol. 23, no. 11, November 2002.
[50]Bin Lu, “Comparison of HfAlO, HfO2/Al2O3, and HfO2 on n-type GaAs using atomic layer deposition,” Superlattices and Microstructures 99, pp. 54-57, 2016.
[51]S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, “MOS Characteristics of Ultrathin CVD HfAlO Gate Dielectrics,” IEEE Electron Device Letters, vol. 24, no. 9, September 2003.
[52]B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1661–1663, Mar. 2002.
[53]Thomas Marron, Shinya Takashima, “Impact of annealing on ALD Al2O3 gate dielectric for GaN MOS devices,” Phys. Status Solidi C 9, No. 3–4, pp. 907–910, 2012.
[54]Qian Wang, Xinhong Cheng, “Interface engineering of an AlNO/AlGaN/GaN MIS diode induced by PEALD alternate insertion of AlN in Al2O3,” The Royal Society of Chemistry 2017.
[55]S.S.H. Hsu, P. Valizadeh, “Characterization and analysis of gate and drain low-frequency noise in AlGaN/GaN HEMTs,” Proceedings. IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, USA, Aug. 2002.
[56]Chung-Yu Ke, Yeong-Her Wang, “Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors Using Stacked Al2O3/TiO2 Gate Dielectrics,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
[57]Hung-Kai Chu, Yeong-Her Wang, “Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Liquid Phase Deposited Aluminum Oxide,” Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
[58]Jialin Zhang, Liang He, Liuan Li, “High-Mobility Normally OFF Al2O3/AlGaN/ GaN MISFET with Damage-Free Recessed-Gate Structure,” IEEE Electron Device Letters, vol. 39, no. 11, November 2018.
[59]Masanobu Hiroki, Kazuhide Kumakura, “Efficient heat dissipation in AlGaN/GaN high electron mobility transistors by substrate-transfer technique,” Phys. Status Solidi A 214, No. 8, 1600845, 2017.
[60]Tingting Liu, Yuechan Kong,” 3-inch GaN on Diamond HEMTs with Device-First Transfer Technology,” IEEE Electron Device Letters, vol. 38, no. 10, October 2017.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw