進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1708201823481900
論文名稱(中文) 資料解析度於山崩潛勢評估準確性影響分析
論文名稱(英文) Impact Analysis of Multi-Resolution Data to the Accuracy of Landslide Susceptibility
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳禹妏
研究生(英文) Yu-Wen Chen
學號 N46054015
學位類別 碩士
語文別 中文
論文頁數 107頁
口試委員 指導教授-余騰鐸
口試委員-李德河
口試委員-董家鈞
口試委員-壽克堅
中文關鍵字 多尺度  崩塌偵測  基因演算法  類神經網路 
英文關鍵字 multi-resolution  landslide detection  genetic algorithm  artificial neural network 
學科別分類
中文摘要 由於台灣本身地形陡峭、地質複雜破碎加上山區開發過度與降雨模式改變,每當有強降雨發生,山崩、土石流、洪水等災害常伴隨而生。現今因技術發展,我們可由LiDAR、航空測量等技術獲得高精度的數值地形模型,而政府公布之山崩目錄有林務局以福衛二號衛星影像圈繪之山崩目錄,與中央地質調查所以五千分之一航照正射影像判釋之山崩目錄。
山崩目錄之解析度決定其可涵蓋之真實山崩尺度,而影響山坡地發生山崩的因素大致可分為潛在因子與觸發因子,其中潛在因子可再細分地質因子、地理因子、環境因子。本研究以台18線 (阿里山公路)為例,以三種解析度的數值地形模型(DTM):(1)空載光達製成之5m DTM,(2)內政部地政司公開之航空測量製成之20m DTM,(3) NASA Shuttle Radar Topography Mission (SRTM)之30m DTM,分別產製二十三項山崩因子圖層。經過相關性檢定,從二十三項因子中篩選出十五項因子,透過結合基因演算法、類神經網路的混合型演算法,評估山崩因子對山崩之影響性,並討論不同尺度之DTM與不同來源之山崩目錄對山崩潛勢評估造成之差異,與對山崩因子重要性排序之影響與分布。
結果顯示以中央地調所山崩目錄建立之模型預測準確度約80%,以林務局山崩目錄建立之模型預測準確度約90%。其中NDVI、土地利用與坡度在所有狀況下均有較高之敏感度。5m,20m,30m之資料的山崩預測準確度表現差異不大,僅20m資料之山崩預測敏感度相較5m,30m資料略高,顯示以台灣目前之資料解析度,20m DTM應用在山崩潛勢評估效果較好。
英文摘要 The extremely heavy rainfall has induced several landslide disasters at Taiwan recently. Alishan Highway, the major road to Alishan National Scenic Area, is one of the highest landslide susceptible area in southern Taiwan. In calculating the landslide susceptibility, the geomorphological factors are derived from DTM (Digital Terrain Model), and this is an effective factor in the detecting landslides. However, the landslide inventory map also influenced by the factor effects. In this study, our object is to determine the relationship between the scale of accuracy in landslide inventory map and the resolution of DTM. We have extracted 16 landslide-conditioning factors from 5m DTM via LiDAR, 20m photogrammetry DTM, and 30m ASTER-GDEM. The landslide inventory maps were produced from aerial photographs at scales 1:5,000 (Central Geological Survey, MOEA) and 8m resolution satellite images (Forestry Bureau, Council of Agriculture, Executive Yuan). We apply the hybrid model including artificial neural network (ANN) and genetic algorithm (GA) to detect the newly landslide area by the outcome of training set. The accuracy of the model based on aerial imagery landslide inventory map and satellite imagery landslide inventory map was about 80% and 90%, respectively. Among of the factors, NDVI, land-use and roughness are the highest sensitive factors. The accuracy of 5m, 20m and 30m spatial resolutions was similar, but the sensitivity of 20m data is slightly higher than the others. It suggests that factors derived from 20m DTM offer better landslide susceptibility assessment for current data resolution in Taiwan. This should associated with the size of minimize mapping unit in producing the landslide inventory map of current version.
論文目次 摘要 I
Abstract II
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 XI
第一章 緒論 1
1.1前言 1
1.2研究目的 5
1.3研究流程 6
第二章 文獻回顧 7
2.1山崩型態 7
2.2山崩潛感因子 10
2.3山崩潛感研究方法 11
2.4多尺度地形因子對山崩模型之影響 15
第三章 研究區域與方法 17
3.1研究區域概述 17
3.2研究資料與工具 19
3.2.1崩塌目錄 19
3.2.2山崩因子 20
3.2.3研究工具 26
3.3資料前處理 27
3.3.1資料分群 27
3.3.2資料類別不平衡 30
3.4類神經網路 32
3.4.1類神經網路基本架構 33
3.4.2轉換函數 36
3.5基因演算法 36
3.5.1基因演算法運作過程 37
3.5.2基因演算法之適應函數 39
3.6研究區域分區與網路訓練、試驗 39
3.7敏感度分析 40
第四章 結果與討論 44
4.1山崩因子相關性檢定 44
4.2基因演算法與類神經網路參數設定 58
4.3多尺度DTM分析結果 59
4.3.1 5m解析度DTM 59
4.3.2 20m解析度DTM 67
4.3.3 30m解析度DTM 74
4.4 DTM解析度預測能力討論 81
4.5 山崩因子敏感度討論 84
4.6山崩因子離散趨勢討論 91
4.7山崩目錄討論 93
第五章 結論 95
第六章 建議 97
參考文獻 99
參考文獻 土木研究所(2012),過去の深層崩壊事例について (~ 平成 22 年度)。
小出博(1955),山崩れ,古 今 書 院,205。
王進德(2007),類神經網路與模糊控制理論入門與應用,台北市: 全華圖書。
行政院公共工程委員會(2006),台灣地區山區道路規劃設計參考手冊。
何春蓀(1989),普通地質學,五南圖書出版有限公司。
何秋燕、詹錢登、楊斯堯(2017),應用證據權重法評估土石流發生潛勢-以高屏溪流域為例,中華水土保持學報,48(2),92-100。
吳久雄、蔡銖華、胡錦地(1989),台灣省山坡地崩坍調查報告,台灣省水土保持局,139頁。
张琦、吴斌、王柏(2005),非平衡数据训练方法概述,计算机科学,32(10),181-186。
李三畏(1984),台灣崩坍問題探討,地工技術,7,43-49。
李佩玲(2016),以遙測影像實施大尺度變異點自動化比對與整治績效評估,成功大學資源工程學系學位論文,1-177。
李錫堤(2009),山崩及土石流災害分析的方法學回顧與展望,台灣公共工程學刊,5(1),1-29。
李馨慈(2010),重大地震地表擾動衰減特性於震後高強度降雨之山崩潛勢分析, 成功大學資源工程學系學位論文,1-127。
周南山(2005),山區道路邊坡災害防治:森林遊憩設施規劃設計與施工研習會。
林芬玲、林家榮、林昭遠(2009),集水區崩塌潛勢劃定之研究:中華水土保持學報。
林昭遠、鄧亞恬、黃文政 (2013),應用環境指標劃定阿里山溪集水區道路沿線崩塌潛勢之研究,水土保持學報,45(3)。
林美聆、莊睦雄、洪鳳儀、盧彥旭、簡文鎧、黃紀慎、林信亨(1999),陳有蘭溪流域土石流溪流地理資訊系統建立與土石流溪流特性分析,防災國家型科技計劃一整合型專案研究報告。
國家災害防救科技中心(2016),臺灣氣候變遷災害衝擊風險評估報告。
張子瑩、徐美玲(2004),暴雨與地震觸發崩塌發生區位之比較:以陳有蘭溪流域為例,地理學報(35),001-016。
莊緯璉(2005),運用判別分析進行山崩潛感分析之研究-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文,178 頁。
許煜煌(2002),以不安定指數法進行地震引致坡地破壞模式分析,國立臺灣大學土木工程學研究所碩士論文,共153頁。

陳正達、朱容練、許晃雄、盧孟明、隋中興、周佳、翁叔平、陳昭銘、林傳堯、鄭兆尊(2014),台灣氣候變遷推估研究,大氣科學,42(3),207-251。
陳樹群、吳俊鋐(2004),崩塌潛勢預測方法於台灣適用性之初探。
陳曜銘(2016),以不安定指數法驗證蝕溝因子崩塌潛感預測之準確性,成功大學資源工程學系學位論文,1-103。
陳韻如、林聖琪、王俞婷、李宗融(2011),山區道路崩塌災害潛勢評估,台灣公路工程,37(1)。
馮豐隆、林鴻鵬(2003),惠蓀林場921地震崩塌地分布分析與復育探討,林業研究季刊,25(4),1-20。
黃筱婷、楊哲銘、曹孟真、董家鈞、劉家男、王泰典、李維峰、謝有忠(2011),地質構造與大型崩塌之關係:以阿里山公路為例,中華水土保持學報,42(2),279-290。
黃誌川、徐美玲(2003),森林集水區邊坡穩定性之評估:以蒙地卡羅模擬無限邊坡模式之參數,地理學報,1-18。
楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利(2011),臺灣常用山崩分類系統,第十四屆大地工程研討會。
溫振宇(2005),結合地震與颱風因子之山崩模式分析,成功大學地球科學系學位論文,1-103。
經濟部中央地質調查研究所(2014),山崩與地滑地質敏感區劃定計畫書 L0004 嘉義縣市。
經濟部水利署(2009),莫拉克颱風暴雨量及洪流量分析。
經濟部水利署(2016),中華民國一〇五年臺灣水文年報。
葉怡成(1993),類神經網路模式應用與實作,台北:儒林圖書股份有限公司。
劉盈劭(2001),地形敏感性的比較研究-以陳有蘭溪北段小支流為例,師大地理所碩士論文。
謝有忠(1999),陳有蘭溪流域土石流發育之地質控制,國立成功大學地球科學研究所,碩士論文,120頁。
簡李濱(1992),應用地理資訊系統建立坡地安定評估之計量方法,國立中興大學土木工程研究所碩士論文,共114頁。
羅昱婷(2010),證據權重法運用於預測崩塌地潛勢之研究-以大漢溪集水區為例, 成功大學地球科學系碩士在職專班學位論文,1-84。
蘇苗彬、蔡顯修、簡李濱(1998),集水區坡地安定評估之計量分析方法,中華水土保持學報。
行政院農業委員會水土保持局、中華水土保持學會(2005),水土保持手冊,行政院農業委員會。
Aleotti, P., Chowdhury, R. (1999), Landslide hazard assessment: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, 58(1), 21-44.
Anbalagan, R. (1992), Landslide hazard evaluation and zonation mapping in mountainous terrain, Engineering Geology, 32(4), 269-277.
Atkinson, P. M., Massari, R. (1998), Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Computers & Geosciences, 24(4), 373-385.
Ayalew, L., Yamagishi, H. (2005), The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65(1-2), 15-31.
Baeza, C., Corominas, J. (2001), Assessment of shallow landslide susceptibility by means of multivariate statistical techniques, Earth Surface Processes and Landforms, 26(12), 1251-1263.
Bates, R. L., Jackson, J. A. (1987), Glossary of geology: American geological institute, Alexandria, Virginia, 788.
Berti, M., Corsini, A., Daehne, A. (2013), Comparative analysis of surface roughness algorithms for the identification of active landslides, Geomorphology, 182, 1-18.
Buda, M., Maki, A., Mazurowski, M. A. (2017), A systematic study of the class imbalance problem in convolutional neural networks, arXiv:171005381.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., Reichenbach, P. (1991), GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms, 16(5), 427-445.
Catani, F., Segoni, S., Falorni, G. (2010), An empirical geomorphology‐based approach to the spatial prediction of soil thickness at catchment scale, Water Resources Research, 46(5).
Chen, C.-Y., Yu, F.-C. (2011), Morphometric analysis of debris flows and their source areas using GIS, Geomorphology, 129(3-4), 387-397.
Chiou, C.-R., Song, G.-Z. M., Chien, J.-H., Hsieh, C.-F., Wang, J.-C., Chen, M.-Y., Liu, H.-Y., Yeh, C.-L., Hsia, Y.-J., Chen, T.-Y. (2010), Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung, Botanical Studies, 51(1), 89-97.
Chorley, R. J. (1957), Climate and morphometry. The Journal of Geology, 65(6), 628-638.
Chorley, R. J., Morgan, M. (1962), Comparison of morphometric features, Unaka Mountains, Tennessee and North Carolina, and Dartmoor, England, Geological society of America Bulletin, 73(1), 17-34。
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.C., Stark, C. P., Lague, D., Lin, J.-C. (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426(6967), 648-651.
Dai, F., Lee, C. (2002), Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42(3-4), 213-228.
Dai, F., Lee, C., Li, J., Xu, Z. (2001), Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong, Environmental Geology, 40(3), 381-391.
Dayan, P., Abbott, L. F. (2001), Theoretical neuroscience, MIT Press.
Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. J., Althuwaynee, O. F. (2013), Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya, Natural Hazards, 65(1), 135-165.
Ercanoglu, M., Gokceoglu, C. (2002), Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environmental Geology, 41(6), 720-730.
Evans, S. (2006), The formation and failure of landslide dams: an approach to risk assessment, Italian Journal of Engineering Geology and Environment, 1, 15-20.
Freer, J., McDonnell, J. J., Beven, K., Peters, N. E., Burns, D. A., Hooper, R., Aulenbach, B., Kendall, C. (2002), The role of bedrock topography on subsurface storm flow, Water Resources Research, 38(12), 5-1-5-16.
Gökceoglu, C., Aksoy, H. (1996), Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques, Engineering Geology, 44(1-4), 147-161.
Garson, G. D. (1991), Interpreting neural-network connection weights, AI expert, 6(4), 46-51.
Ghimire, M. (2001), Geo-hydrological hazard and risk zonation of Banganga watershed using GIS and remote sensing, Journal of Nepal Geological Society, 23, 99-110.
Gorsevski, P. V., Gessler, P., & Foltz, R. B. (2000), Spatial prediction of landslide hazard using discriminant analysis and GIS, GIS in the Rockies 2000 Conference and Workshop.
Gray, D. H., Leiser, A. T. (1982), Biotechnical slope protection and erosion control: Van Nostrand Reinhold Company Inc.
Grefenstette, J. J. (1986), Optimization of control parameters for genetic algorithms, IEEE Transactions on Systems,Man, and Cybernetics, 16(1), 122-128.
Gregory, K., Gardiner, V. (1975), Drainage density and climate, Zeitschrift fur Geomorphologie, 19(3), 287-298.
Gupta, R., Joshi, B. (1990), Landslide hazard zoning using the GIS approach—a case study from the Ramganga catchment, Himalayas. Engineering Geology, 28(1-2), 119-131.
Hashem, S. (1992), Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions, 1992 International Joint Conference on Neural Networks, Baltimore, IEEE, vol. 1, 1992, pp. 419 – 429.
Holland, J. H. (1975), Adaption in Natural and Artificial Systems: The University of Michigan Press, Ann Arbor, MI.
Horton, R. E. (1932), Drainage‐basin characteristics, Trans. AGU, 13, 350–361.
Horton, R. E. (1945), Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geological Society of America Bulletin, 56(3), 275-370.
Ives, J. D., Bovis, M. J. (1978), Natural hazards maps for land-use planning, San Juan Mountains, Colorado, U.S.A., Arctic and Alpine Research, 185-212.
Jensen, J. R. (1986), Introductory digital image processing: a remote sensing perspective: Prentice-Hall.
Kawabata, D., Bandibas, J. (2009), Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN), Geomorphology, 113(1-2), 97-109.
Keijsers, J., Schoorl, J., Chang, K.-T., Chiang, S.-H., Claessens, L., Veldkamp, A. (2011), Calibration and resolution effects on model performance for predicting shallow landslide locations in Taiwan, Geomorphology, 133(3-4), 168-177.
Kienholz, H. (1978), Maps of geomorphology and natural hazards of Grindelwald, Switzerland: scale 1: 10,000, Arctic and Alpine Research, 169-184.
Koukis, G., Ziourkas, C. (1991), Slope instability phenomena in Greece: a statistical analysis, Bulletin of Engineering Geology and the Environment, 43(1), 47-60.
Lee, S. (2007), Application and verification of fuzzy algebraic operators to landslide susceptibility mapping, Environmental Geology, 52(4), 615-623.
Lee, S., Choi, J., Woo, I. (2004), The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea, Geosciences Journal, 8(1), 51.
Lee, S., Ryu, J.-H., Won, J.-S., & Park, H.-J. (2004), Determination and application of the weights for landslide susceptibility mapping using an artificial neural network, Engineering Geology, 71(3-4), 289-302.
Li, Y.-H. (1976), Denudation of Taiwan island since the Pliocene epoch, Geology, 4(2), 105-107.
Lin, C.-W., Chang, W.-S., Liu, S.-H., Tsai, T.-T., Lee, S.-P., Tsang, Y.-C., Shieh, C.-L., Tseng, C.-M. (2011). Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan, Engineering Geology, 123(1), 3-12.
Lu, M., AbouRizk, S., Hermann, U. (2001), Sensitivity analysis of neural networks in spool fabrication productivity studies, Journal of Computing in Civil Engineering, 15(4), 299-308.
Lu, N., Godt, J. (2008), Infinite slope stability under steady unsaturated seepage conditions, Water Resources Research, 44(11).
Luzi, L., Pergalani, F. (1999), Slope instability in static and dynamic conditions for urban planning: the ‘Oltre Po Pavese’case history (Regione Lombardia–Italy), Natural Hazards, 20(1), 57-82.
MacQueen, J. (1967), Some methods for classification and analysis of multivariate observations. Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.
Mazurowski, M. A., Habas, P. A., Zurada, J. M., Lo, J. Y., Baker, J. A., Tourassi, G. D. (2008), Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance, Neural Networks, 21(2-3), 427-436.
Melton, M. A. (1958), Correlation structure of morphometric properties of drainage systems and their controlling agents. The Journal of Geology, 66(4), 442-460.
Moore, I. D., Grayson, R., Ladson, A. (1991), Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrological Processes, 5(1), 3-30.
Nagarajan, R., Roy, A., Kumar, R. V., Mukherjee, A., Khire, M. (2000), Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bulletin of Engineering Geology and the Environment, 58(4), 275-287.
Newmark, N. M. (1965), Effects of earthquakes on dams and embankments, Geotechnique, 15(2), 139-160.
Nourani, V., Fard, M. S. (2012), Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes, Advances in Engineering Software, 47(1), 127-146.
Okunishi, K., Sonoda, M., Yokoyama, K. (1999), Geomorphic and environmental controls of earthquake-induced landslides, Trans. Jpn Geomorph Union, 20, 351-368.
Ozdemir, A. (2009), Landslide susceptibility mapping of vicinity of Yaka Landslide (Gelendost, Turkey) using conditional probability approach in GIS, Environmental Geology, 57(7), 1675-1686.
Pérez‐Peña, J., Azañón, J., Booth‐Rea, G., Azor, A., Delgado, J. (2009), Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral, Journal of Geophysical Research: Earth Surface, 114(F2).
Pachauri, A., Gupta, P., Chander, R. (1998), Landslide zoning in a part of the Garhwal Himalayas, Environmental Geology, 36(3-4), 325-334.
Pareschi, M., Santacroce, R., Sulpizio, R., Zanchetta, G. (2002), Volcaniclastic debris flows in the Clanio Valley (Campania, Italy): insights for the assessment of hazard potential, Geomorphology, 43(3-4), 219-231.
Park, S., McSweeney, K., Lowery, B. (2001). Identification of the spatial distribution of soils using a process-based terrain characterization, Geoderma, 103(3-4), 249-272.
Paudel, U., Oguchi, T., Hayakawa, Y. (2016), Multi-resolution landslide susceptibility analysis using a DEM and random forest, International Journal of Geosciences, 7(05), 726.
Penna, D., Borga, M., Aronica, G. T., Brigandì, G., Tarolli, P. (2014), The influence of grid resolution on the prediction of natural and road-related shallow landslides, Hydrology and Earth System Sciences, 18(6), 2127.
Popescu, M. (1994). A suggested method for reporting landslide causes, Bulletin of Engineering Geology and the Environment, 50(1), 71-74.
Popescu, M. E. (2002), Landslide causal factors and landslide remediatial options, 3rd International Conference on Landslides, Slope Stability and Safety of Infra-Structures.
Pourghasemi, H. R., Mohammady, M., Pradhan, B. (2012), Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran, Catena, 97, 71-84.
Pourghasemi, H. R., Pradhan, B., Gokceoglu, C. (2012), Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran, Natural Hazards, 63(2), 965-996.
Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., Moradi, H. R. (2013), Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran, Arabian Journal of Geosciences, 6(7), 2351-2365.
Pradhan, B., Lee, S. (2010), Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling, Environmental Modelling & Software, 25(6), 747-759.
Rupke, J., Cammeraat, E., Seijmonsbergen, A., Van Westen, C. (1988), Engineering geomorphology of the widentobel catchment, appenzell and sankt gallen, switzerland. A geomorphologuical inventory system applied to geotechnical appraisal of slope stability, Engineering Geology, 26(1), 33-68.
Sabokbar, H. F., Roodposhti, M. S., Tazik, E. (2014), Landslide susceptibility mapping using geographically-weighted principal component analysis, Geomorphology, 226, 15-24.
Schumm, S. A. (1956), Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597-646.
Sharpe, C. (1938), Landslides and related phenomena, Columbia University Press, NY, 1370.
Shepard, M. K., Campbell, B. A., Bulmer, M. H., Farr, T. G., Gaddis, L. R., Plaut, J. J. (2001), The roughness of natural terrain: A planetary and remote sensing perspective, Journal of Geophysical Research: Planets, 106(E12), 32777-32795.
Smith, K. G. (1958), Erosional processes and landforms in badlands national monument, South Dakota, Geological Society of America Bulletin, 69(8), 975-1008.
Soeters, R., van Westen, C. J. (1996), Landslides: Investigation and mitigation. Chapter 8-Slope instability recognition, analysis, and zonation, Transportation Research Board Special Report 247.
Stevenson, P. (1977), An empirical method for the evaluation of relative landslip risk, Bulletin of the International Association of Engineering Geology, 16(1), 69.
Tarolli, P., & Tarboton, D. G. (2006), A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping, Hydrology and Earth System Sciences Discussions, 10(5), 663-677.
Terzaghi, K. (1950), Mechanism of landslides: Harvard University, Department of Engineering.
Thiery, Y., Malet, J.-P., Sterlacchini, S., Puissant, A., Maquaire, O. (2007), Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment, Geomorphology, 92(1-2), 38-59.
Tu, J.-Y., Chou, C., Chu, P.-S. (2009), The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change, Journal of Climate, 22(13), 3617-3628.
Uromeihy, A., Mahdavifar, M. (2000), Landslide hazard zonation of the Khorshrostam area, Iran, Bulletin of Engineering Geology and the Environment, 58(3), 207-213.
van Westen, C. J., Van Asch, T. W. J., Soeters, R. (2006), Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167-184.
Varnes, D. J. (1978), Slope movement types and processes, Transportation Research Board Special Report, 176, 11-33.
Wieczorek, G. F., Mandrone, G., DeCola, L. (1997), The influence of hillslope shape on debris-flow initiation. First International Conference Water Resources Engineering.
Wilson, J. P., Gallant, J. C. (2000), Terrain analysis: principles and applications: John Wiley & Sons.
Wilson, L. (1971), Drainage density, length ratios, and lithology in a glaciated area of southern Connecticut, Geological Society of America Bulletin, 82(10), 2955-2956.
Yilmaz, I. (2009), Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey), Computers & Geosciences, 35(6), 1125-1138.
Yilmaz, I. (2010), Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine, Environmental Earth Sciences, 61(4), 821-836.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw