進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1708201820015600
論文名稱(中文) 吸熱燃料用於超燃衝壓引擎冷卻技術之評估研究
論文名稱(英文) Studies of Supersonic Ramjet Engine Cooling Technology by using Endothermic Hydrocarbon Fuels
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 蔣政育
研究生(英文) Cheng-Yu Chiang
學號 P46054391
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-呂宗行
口試委員-張克勤
口試委員-林文山
中文關鍵字 碳氫燃料  JP-10  2-D 軸對稱圓管  極音速載具  超燃衝壓引擎  熱傳惡化  熱傳經驗公式 
英文關鍵字 Hydrocarbon fuel  JP-10  2-D axisymmetric tube  hypersonic vehicle  scramjet engine  heat transfer deterioration  empirical heat transfer correlations 
學科別分類
中文摘要 超燃衝壓引擎熱管理系統技術是我國國防產業的重點科技,而結合流經結構內部管道之熱對流冷卻和燃料裂解吸熱反應技術應用於超燃衝壓引擎領域更是世界各國亟欲發展的核心技術。此種結合對流冷卻和燃料裂解吸熱反應技術而成的特殊領域超燃衝壓引擎熱管理系統技術,已被視為革命性的關鍵科技。藉由本研究的執行,開發出多功能之超燃衝壓引擎熱管理系統,並促進超燃衝壓引擎技術產業之進步。本研究尋找並研發高效率之熱管理系統,可應用於超燃衝壓引擎熱傳,對於下一世代極音速載具超燃衝壓引擎之散熱問題將有非常大的幫助。本研究所發展之超燃衝壓引擎熱管理系統分析技術平台,具有技術自主化之可能性,將根據載具本體或超燃衝壓引擎表面溫度限制之熱通量需求下,分析各種吸熱燃料熱管理系統設計,發現在冷卻管道中碳氫吸熱燃料的工作壓力越接近臨界壓力,物理性質變化會越劇烈並且會因為密度( )與定壓比熱(Cp)的快速降低導致熱傳惡化的發生,評估吸熱燃料熱管理系統是否滿足未來極音速飛行載具超燃引擎上熱傳結構設計之需求,並且比對文獻中的熱傳經驗公式考慮到雷諾數(Re)、普朗特數(Pr)、JP-10碳氫燃料的物理性質(密度、比熱、熱傳導係數、黏滯係數)、與壓力的參數數值無法拿來使用在JP-10碳氫燃料,因此本文獻將製作熱傳經驗公式以利於設置參數的考量。
英文摘要 Scramjet engine thermal management system technology, which combined convection cooling by passing fuel through internal channel structures and the fuel endothermic cracking reaction, is one of the main efforts of our current national defense science and technology. Such thermal management system with convection cooling and fuel endothermic cracking reaction has been regarded as a key technology of scramjet engine around the world. With the implementation of this research, it is expected to develop an analysis tool of scramjet engine thermal management system that can help researchers in the field of scramjet engine in their design of thermal management systems. The research developed a high efficiency thermal management system that can be used for the next generation hypersonic speed vehicle scramjet's cooling problems. Scramjet engine thermal management systems analysis technology platform development in this research, in addition to the implementation of this research, it can also promote the possibility of technical autonomy. This research will analyze the thermal management system designs for the scramjet engine in hypersonic vehicle based on the heat flux needs and surface temperature limits. It is found that the closer working pressure of the hydrocarbon endothermic fuel in the cooling pipe is to the critical pressure, the more severe physical properties changes. In this process, the heat transfer deterioration caused by the decreased Cp and ρ. Various endothermic fuel thermal management system will be designed and evaluated to meet the heat transfer needs. Comparison with empirical heat transfer correlations, and then make new heat transfer correlation of JP-10 hydrocarbon fuel to facilitate Compared with the heat transfer empirical formula in the literature, the physical properties (density, specific heat, thermal conductivity, viscosity coefficient) and pressure parameters of the JP-10 hydrocarbon fuel can not be used in the JP-10 hydrocarbon fuel. Therefore, the heat transfer empirical formula will be made in this paper to facilitate the consideration of setting parameters.
論文目次 摘要 I
Abstract II
誌謝 IX
目錄 X
表目錄 XII
圖目錄 XIII
符號索引 XXI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 熱防護系統 3
1.2.2 吸熱型碳氫燃料 11
1.2.3 超臨界狀態 12
1.2.4 裂解反應 14
1.3 研究動機 19
1.4 本文架構 21
第二章 研究方法與步驟 22
2.1 系統介紹 22
2.2 Fluent介紹 24
2.2.1 連續方程式 26
2.2.2 動量方程式 26
2.2.3 能量方程式 27
2.2.4 RNG紊流模型 28
2.3 燃油物理性質 29
2.4 網格收斂性 36
第三章 超燃衝壓引擎冷卻管道系統2-D軸對稱圓管數值分析 41
3.1 熱傳惡化 41
3.2 物理性質的影響 50
3.2.1 比熱影響熱流場 51
3.2.2 密度影響熱流場 53
3.2.3 熱傳導係數影響熱流場 57
3.2.4 黏滯係數影響熱流場 58
3.3 管徑的影響 64
3.4 熱通量的影響 67
3.5 壓力的影響 68
3.6 相關文獻之熱傳經驗公式與建立 70
第四章 超燃衝壓引擎冷卻管道系統3-D冷卻管道數值分析 79
4.1 三維網格獨立性與模擬測試 79
4.2 3-D冷卻管道模擬結果 84
第五章 結論 88
未來工作 90
Aspen plus介紹 90
替代燃料裂解反應 91
裂解反應結果 95
Reference 97
參考文獻 [1] W. H. Heiser and D. T. Pratt, Hypersonic airbreathing propulsion. Aiaa, 1994.
[2] J. Hank, J. Murphy, and R. Mutzman, "The X-51A scramjet engine flight demonstration program”, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2540, 2008.
[3] 郭永胜, 张玲玲, 魏会, 方文军, and 林瑞森, "改善吸热型碳氢燃料热管理能力的研究进展”, 石油学报 (石油加工), vol. 27, no. 5, pp. 822-828, 2011.
[4] M. Sicard, B. Raepsaet, F. Ser, and C. Masson, "Determination of the decomposition products of a n-alkane endothermic fuel under supercritical conditions”, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, p. 3402, 2005.
[5] D. Glass, "Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles”, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2682, 2008.
[6] D. Zhang, J. Qin, Y. Feng, F. Ren, and W. Bao, "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets”, Energy, vol. 77, pp. 732-741, 2014.
[7] H. Deng, K. Zhu, G. Xu, Z. Tao, and J. Sun, "Heat transfer characteristics of RP-3 kerosene at supercritical pressure in a vertical circular tube”, Journal of Enhanced Heat Transfer, vol. 19, no. 5, 2012.
[8] C. Zhang, G. Xu, L. Gao, Z. Tao, H. Deng, and K. Zhu, "Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure”, The Journal of Supercritical Fluids, vol. 72, pp. 90-99, 2012.
[9] F. Zhong, X. Fan, G. Yu, J. Li, and C.-J. Sung, "Heat transfer of aviation kerosene at supercritical conditions”, Journal of Thermophysics and Heat Transfer, vol. 23, no. 3, pp. 543-550, 2009.
[10] L. Zhang, R. Zhang, S. Xiao, J. Jiang, and J. Le, "Experimental investigation on heat transfer correlations of n-decane under supercritical pressure”, International Journal of Heat and Mass Transfer, vol. 64, pp. 393-400, 2013.
[11] B. Stiegemeier, M. Meyer, and R. Taghavi, "A thermal stability and heat transfer investigation of five hydrocarbon fuels”, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 3873, 2002.
[12] J. Lin, J. Zhang, E. Sokolova, and W. Li, "Heat Transfer Characteristics of Downward Supercritical Kerosene Flow in Minitubes”, ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting, pp. V001T02A002-V001T02A002: American Society of Mechanical Engineers, 2016.
[13] B. Youn and A. Mills, "Cooling panel optimization for the active cooling system of a hypersonic aircraft”, Journal of thermophysics and heat transfer, vol. 9, no. 1, pp. 136-143, 1995.
[14] S. Zhang, J. Qin, K. Xie, Y. Feng, and W. Bao, "Thermal behavior inside scramjet cooling channels at different channel aspect ratios”, Journal of Propulsion and Power, vol. 32, no. 1, pp. 57-70, 2015.
[15] L. Wang, Z. Chen, and H. Meng, "Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures”, Applied Thermal Engineering, vol. 54, no. 1, pp. 237-246, 2013.
[16] E. Curran and S. Murthy, Scramjet propulsion. AIAA, 2001.
[17] T. Edwards, "Liquid fuels and propellants for aerospace propulsion: 1903-2003”, Journal of propulsion and power, vol. 19, no. 6, pp. 1089-1107, 2003.
[18] A. Urbano and F. Nasuti, "Conditions for the occurrence of heat transfer deterioration in light hydrocarbons flows”, International Journal of Heat and Mass Transfer, vol. 65, pp. 599-609, 2013.
[19] 祝敏波, "碳氢燃料流动传热研究及物性测量与评估”, 西安建筑科技大学, 2015.
[20] Y. Xing, W. Fang, W. Xie, Y. Guo, and R. Lin, "Thermal cracking of JP-10 under pressure”, Industrial & Engineering Chemistry Research, vol. 47, no. 24, pp. 10034-10040, 2008.
[21] T. J. Bruno, M. L. Huber, A. Laesecke, E. W. Lemmon, and R. A. Perkins, "Thermochemical and thermophysical properties of JP-10”, Technical ReportNISTIR, vol. 6640, p. 325, 2006.
[22] J. Wang, H. Li, S. Yu, and T. Chen, "Investigation on the characteristics and mechanisms of unusual heat transfer of supercritical pressure water in vertically-upward tubes”, International Journal of Heat and Mass Transfer, vol. 54, no. 9-10, pp. 1950-1958, 2011.
[23] P.-X. Jiang, B. Liu, C.-R. Zhao, and F. Luo, "Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime”, International Journal of Heat and Mass Transfer, vol. 56, no. 1-2, pp. 741-749, 2013.
[24] A. Nixon, I. Bjorklund, R. Hawthorn, H. Henderson, and A. Ritchie, "VAPORIZING AND ENDOTHERMIC FUELS FOR ADVANCED ENGINE APPLICATION. PART I. PRELIMINARY STUDIES OF CATALIZED REACTIONS AND THERMAL STABILITIES OF HYDROCARBON FUELS”, SHELL DEVELOPMENT CO EMERYVILLE CALIF, 1964.
[25] G. B. Bruening and W. S. Chang, "Cooled cooling air systems for turbine thermal management”, ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, pp. V003T01A002-V003T01A002: American Society of Mechanical Engineers, 1999.
[26] M. R. Glickstein and L. J. Spadaccini, "Applications of endothermic reaction technology to the high speed civil transport”, 1998.
[27] A. Nixon, G. Ackerman, L. Faith, R. Hawthorn, and H. Henderson, "Vaporizing and endothermic fuels for advanced engine application. Part I. Studies of thermal and catalytic reactions, thermal stabilities, and combustion properties of hydrocarbon fuels”, SHELL DEVELOPMENT CO EMERYVILLE CA, 1967.
[28] H. Huang, D. Sobel, and L. Spadaccini, "Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling AIAA 2002-3871”, UNITED TECHNOLOGIES RESEARCH CENTER EAST HARTFORD CT, 2002.
[29] J. Srinivas and P. Manjunath, "Experimental Demonstration of the Concept of Endothermic Fuels for Providing Efficient Cooling to Scramjet Combustors”, 2011.
[30] R. Mutzman and S. Murphy, "X-51 development: a chief engineer’s perspective”, 17th AIAA international space planes and hypersonic systems and technologies conference, 2011.
[31] D. Wishart, T. Fortin, D. Guinan, and D. Modroukas, "Design, fabrication and testing of an actively cooled scramjet propulsion system”, 41st Aerospace Sciences Meeting and Exhibit, 2003.
[32] X. Li, X. Huai, J. Cai, F. Zhong, X. Fan, and Z. Guo, "Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure”, Applied Thermal Engineering, vol. 31, no. 14-15, pp. 2360-2366, 2011.
[33] X. Li, F. Zhong, X. Fan, X. Huai, and J. Cai, "Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure”, Applied Thermal Engineering, vol. 30, no. 13, pp. 1845-1851, 2010.
[34] K. Xu and H. Meng, "Modeling and simulation of supercritical-pressure turbulent heat transfer of aviation kerosene with detailed pyrolytic chemical reactions”, Energy & Fuels, vol. 29, no. 7, pp. 4137-4149, 2015.
[35] Y. Chen, Y. Wang, Z. Bao, Q. Zhang, and X.-Y. Li, "Numerical investigation of flow distribution and heat transfer of hydrocarbon fuel in regenerative cooling panel”, Applied Thermal Engineering, vol. 98, pp. 628-635, 2016.
[36] Y. Feng, J. Qin, S. Zhang, W. Bao, Y. Cao, and H. Huang, "Modeling and analysis of heat and mass transfers of supercritical hydrocarbon fuel with pyrolysis in mini-channel”, International Journal of Heat and Mass Transfer, vol. 91, pp. 520-531, 2015.
[37] A. Woschnak, D. Suslov, and M. Oschwald, "Experimental and numerical investigation of thermal stratification effects”, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003.
[38] S. Zhang, N. Cui, Y. Xiong, Y. Feng, J. Qin, and W. Bao, "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines”, Energy, vol. 123, pp. 9-19, 2017.
[39] S. Zhang, Y. Feng, Y. Jiang, J. Qin, W. Bao, J. Han, and O. J. Haidn, "Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios”, Acta Astronautica, vol. 127, pp. 41-56, 2016.
[40] B. I. Lee and M. G. Kesler, "A generalized thermodynamic correlation based on three‐parameter corresponding states”, AIChE Journal, vol. 21, no. 3, pp. 510-527, 1975.
[41] W. Bao, S. Zhang, J. Qin, W. Zhou, and K. Xie, "Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management”, Energy, vol. 67, pp. 149-161, 2014.
[42] K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, and S. Yoshida, "Forced convective heat transfer to supercritical water flowing in tubes”, International journal of heat and mass transfer, vol. 15, no. 12, pp. 2575-2593, 1972.
[43] I. L. Pioro, H. F. Khartabil, and R. B. Duffey, "Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey)”, Nuclear engineering and design, vol. 230, no. 1-3, pp. 69-91, 2004.
[44] V. Yeroshenko and L. Yaskin, "Applicability of various correlations for the prediction of turbulent heat transfer of supercritical helium”, Cryogenics, vol. 21, no. 2, pp. 94-96, 1981.
[45] V. Bogachev, V. Eroshenko, and L. Yaskin, "Relative increase in heat transfer in viscous-inertial regimes of flow of helium at supercritical pressure in a heated pipe”, Journal of Engineering Physics and Thermophysics, vol. 44, no. 4, pp. 363-366, 1983.
[46] K. Kitoh, S. Koshizuka, and Y. Oka, "Refinement of transient criteria and safety analysis for a high-temperature reactor cooled by supercritical water”, Nuclear Technology, vol. 135, no. 3, pp. 252-264, 2001.
[47] J. D. Jackson, "Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors”, The 13th pacific basin nuclear conference. Abstracts, 2002.
[48] K. Liang, B. Yang, and Z. Zhang, "Investigation of heat transfer and coking characteristics of hydrocarbon fuels”, Journal of Propulsion and Power, vol. 14, no. 5, pp. 789-796, 1998.
[49] D. Huang, B. Ruan, X. Wu, W. Zhang, G. Xu, Z. Tao, P. Jiang, L. Ma, W. Li, "Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures”, Chinese Journal of Chemical Engineering, vol. 23, no. 2, pp. 425-434, 2015.
[50] F. Dittus and L. Boelter, "Heat Transfer in Automobile Radiators of the Tubular Type”, University of California at Berkeley, Berkeley, CA, pp. 443-461, 1930.
[51] E. N. Sieder and G. E. Tate, "Heat transfer and pressure drop of liquids in tubes”, Industrial & Engineering Chemistry, vol. 28, no. 12, pp. 1429-1435, 1936.
[52] S. Nakra, R. J. Green, and S. L. Anderson, "Thermal decomposition of JP-10 studied by micro-flowtube pyrolysis-mass spectrometry”, Combustion and flame, vol. 144, no. 4, pp. 662-674, 2006.
[53] 谢安俊 and 刘世华, "模拟软件—ASPEN PLUS”, 石油与天然气化工, vol. 24, no. 4, pp. 247-251, 1995.
[54] S. Zhang, J. Qin, W. Bao, Y. Feng, and K. Xie, "Thermal management of fuel in advanced aeroengine in view of chemical recuperation”, Energy, vol. 77, pp. 201-211, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw