進階搜尋


下載電子全文  
系統識別號 U0026-1708201816570400
論文名稱(中文) 評估集水區中上游降雨型崩塌預測模式與影響因子
論文名稱(英文) Assessment of rainfall-induced landslide evaluation model feasibility and controlling factors at upstream and midstream area within watershed
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 張佑誠
研究生(英文) Yu-Cheng Chang
學號 N46051017
學位類別 碩士
語文別 中文
論文頁數 136頁
口試委員 指導教授-余騰鐸
口試委員-楊名
口試委員-潘以文
口試委員-劉啟清
中文關鍵字 潛感分析  不安定指數法  區域尺度差異  預測模式評估 
英文關鍵字 Susceptibility  Instability index method  Model feasibility  Rainfall-induced landslide 
學科別分類
中文摘要 台灣由於位在板塊交界帶,造山運動強烈,地質破碎且地形陡峭,再加上每年夏秋兩季之梅雨及颱風帶來大量之水氣,兩者交互作用下造成台灣坡地災害頻傳,也因此如何有效評估坡地災害危險性及找出危險區域是台灣在災害防治上之重要課題。
過去台灣在山崩潛勢預測模式上多使用歷年山崩目錄經統計方法計算得潛感圖,或者針對特定事件產生之崩塌進行訓練得到事件型潛勢評估結果,而前者無法辨別出不同事件類型之影響,後者則因事件數較少,無法得知在該事件類型之代表性。因此本研究收集2012年至2015年共8場大雨及颱風事件,經前後衛星影像判釋所得崩塌地以不安定指數法進行潛感評估,以比較單一事件型之崩塌潛感結果與8場事件崩塌合併後之評估結果是否具有一致性。針對研究區之區域特性對潛勢評估之影響,本研究另外探討集水區上游與中游區之崩塌特性差異。整體結果上,個別事件之潛感圖成功率曲線AUC值普遍有0.9以上,而在各事件崩塌合併後之潛感圖AUC值約在0.8,顯示選取之評估因子能有效辨別出崩塌與非崩塌區。而在崩塌發生區位上,不同事件之高權重因子及高崩壞比區域皆有明顯不同,因此當各事件崩塌合併後其權重明顯下降,顯示單一事件特性之影響會導致在評估上較難以表達不同事件之結果。而上游區與中游區雖然高權重因子相似,但在高崩壞比區位上仍有差異,因此當兩區一併探討時,差異被模糊化後則不易找出個別敏感區域,故評估時須注意區域尺度對潛勢評估之影響。
英文摘要 The objective of this study is to discuss the feasibility of landslide susceptibility mapping model from different viewpoint. In Taiwan, landslide susceptibility map is evaluated based on long-term landslide inventory or landslides triggered by single extreme hazard event. These two different kinds of landslide inventory might lead to different modeling parameter. Also, the complexity and mountainous environment will cause micro zonation effect within the study area to reflect the different landslide-sensitive conditions.
In order to understand the difference of landslide-sensitive conditions in different situations, this study collected eight rainfall events and recognized landslide areas which triggered in each event by post-event satellite images, and the study region was divided to upstream and midstream area to compare the difference of high landslide risk area in each selected sub-region. Then the landslide susceptibility maps were calculated by instability index method. The result reveals different landslide-sensitive conditions among landslide map in single individual rainfall event and landslide map includes all landslides in with all superimposed of eight rainfall events. The weighting value of controlling factors fluctuate dramatically between these two cases. The difference of landslide susceptibility map between two sub-region show that the importance of controlling factors in each sub-region is similar, but high failure ratio class of each controlling factor is different.
The landslides inventory maps we choose to calculate landslide susceptibility will change the result. Evaluating with landslide during single rainfall event might lead to inaccurate result because landslide areas is relatively rare, and landslide-sensitive condition in sub-regions within watershed is different owing to complicate geomorphology. Therefore, enough landslide area and regional difference should be taken into consideration when assessing landslide risk.
論文目次 摘要 I
致謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法與流程 2
第二章 文獻回顧 4
2.1 崩塌發生機制與型態 4
2.2 崩塌影響因子 5
2.3 崩塌潛感評估方法 10
2.3.1 定性法 10
2.3.2 定量法 11
2.4 降雨引致之崩塌潛勢分析 15
第三章 研究方法 17
3.1 資料收集 17
3.1.1 研究區域概述 17
3.1.2 內部控制因子 18
3.1.3 誘發因子 22
3.2 崩塌地判釋 24
3.3 不安定指數法 25
3.3.1 定義因子評分 26
3.3.2 計算因子權重 27
3.4 成功率曲線SRC 28
第四章 研究結果 30
4.1 事件因子評分與崩塌發生比例 30
4.1.1 高程 31
4.1.2 坡度 33
4.1.3 地層 35
4.1.4 坡向 37
4.1.5 土地利用 39
4.1.6 道路距離 41
4.1.7 水系距離 43
4.1.8 構造線距離 45
4.1.9 粗糙度 47
4.1.10 平面曲率 49
4.1.11 剖面曲率 51
4.1.12 雨量 53
4.2 整體因子評分與崩壞比 54
4.2.1 高程 54
4.2.2 坡度 56
4.2.3 地層 58
4.2.4 坡向 60
4.2.5 土地利用 62
4.2.6 道路距離 64
4.2.7 水系距離 66
4.2.8 構造線距離 68
4.2.9 粗糙度 70
4.2.10 平面曲率 72
4.2.11 剖面曲率 74
4.2.12 降雨量 76
第五章 結果討論 78
5.1 上游區域事件型崩塌潛勢差異 78
5.1.1 上游區因子權重分析 78
5.1.2 潛勢評估結果 81
5.1.3 差異探討 84
5.2 中游區事件型崩塌潛勢差異 86
5.2.1 中游區域因子權重 86
5.2.2 潛勢評估結果 89
5.2.3 差異探討 93
5.3 上中游整體差異 94
第六章 結論與建議 97
6.1 結論 97
6.2 建議 99
參考文獻 100
附錄 105
參考文獻 Agterberg, F. P., and Cheng, Q. (2002). Conditional Independence Test for Weights-of-Evidence Modeling. Natural Resources Research, 11(4), 249-255.
Aleotti, P., and Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21-44.
Althuwaynee, O. F., Pradhan, B., Park, H.-J., and Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA, 114, 21-36.
Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32(4), 269-277.
Baeza, C., and Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26(12), 1251-1263.
Barton, N., Lien, R., and Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock mechanics, 6(4), 189-236.
Baum, R. L., Savage, W. Z., and Godt, J. W. (2002). TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. US geological survey open-file report, 424, 38.
Bieniawski, Z. T., and Bieniawski, Z. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering: John Wiley & Sons.
Brabb, E. E., Pampeyan, E. H., and Bonilla, M. G. (1972). Landslide susceptibility in San Mateo County, California (360). Retrieved from http://pubs.er.usgs.gov/publication/mf360
Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., Castellani, M., and Salvati, P. (2002). A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Natural Hazards and Earth System Science, 2(1/2), 57-72.
Carrara, A. (1983). Multivariate models for landslide hazard evaluation. Journal of the International Association for Mathematical Geology, 15(3), 403-426.
Carson, M. A., and Kirkby, M. J. (1972). Hillslope form and process.
Chung, C.-J. F., Fabbri, A. G., and Van Westen, C. J. (1995). Multivariate regression analysis for landslide hazard zonation. In Geographical information systems in assessing natural hazards (pp. 107-133): Springer.
Chung, C. J. F., and Fabbri, A. (1999). Probabilistic prediction models for landslide hazard mapping (Vol. 65).
Conoscenti, C., Di Maggio, C., and Rotigliano, E. (2008). GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology, 94(3), 325-339.
Constantin, M., Bednarik, M., Jurchescu, M. C., and Vlaicu, M. (2011). Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Sciences, 63(2), 397-406.
Cooke, R., and Doornkamp, J. C. (1990). Geomorphology in environmental management: a new introduction: Oxford University Press (OUP).
Dunne, T. (1980). Formation and controls of channel networks. Progress in Physical Geography, 4(2), 211-239.
Fuchu, D., Lee, C. F., and Sijing, W. (1999). Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong. Engineering Geology, 51(4), 279-290.
Gómez, H., and Kavzoglu, T. (2005). Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology, 78(1), 11-27.
García-Rodríguez, M., and Malpica, J. (2010). Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model. Natural Hazards and Earth System Sciences, 10(6), 1307.
Ghosh, S., van Westen, C. J., Carranza, E. J. M., Jetten, V. G., Cardinali, M., Rossi, M., and Guzzetti, F. (2012). Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Engineering Geology, 128, 49-62.
Greenbaum, D., Tutton, M., Bowker, M., Browne, T., Buleka, J., Greally, K., Kuna, G., McDonald, A., Marsh, S., and Northmore, K. (1995). Rapid methods of landslide hazard mapping: Papua New Guinea case study.
Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P. (2004). Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, 73(3), 229-245.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181-216.
Harp, E. L., and Jibson, R. W. (1996). Landslides triggered by the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America, 86(1B), S319-S332.
Jade, S., and Sarkar, S. (1993). Statistical models for slope instability classification. Engineering Geology, 36(1), 91-98.
Jordan, C., O’Connor, E., Marchant, A., Northmore, A., Greenbaum, D., McDonald, A., Kovacik, M., and Ahmed, R. (2000). Rapid landslide susceptibility mapping using remote sensing and GIS modelling. Proc. 14th International Conference on Applied Geologic Remote Sensing, Las Vegas.
Keefer, D. K. (2000). Statistical analysis of an earthquake-induced landslide distribution — the 1989 Loma Prieta, California event. Engineering Geology, 58(3), 231-249.
Koch, M., and Mather, P. M. (1997). Lineament mapping for groundwater resource assessment: A comparison of digital Synthetic Aperture Radar (SAR) imagery and stereoscopic Large Format Camera (LFC) photographs in the Red Sea Hills, Sudan. International Journal of Remote Sensing, 18(7), 1465-1482.
Lee, C. T., Huang, C.-C., Lee, J.-F., Pan, K.-L., Lin, M.-L., and Dong, J.-J. (2008). Statistical approach to earthquake-induced landslide susceptibility. Engineering Geology, 100(1), 43-58.
Lee, S., and Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6), 847-855.
Lee, S., and Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47(7), 982-990.
Lepore, C., Kamal, S. A., Shanahan, P., and Bras, R. L. (2012). Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environmental Earth Sciences, 66(6), 1667-1681.
Mah, A., Taylor, G. R., Lennox, P., and Balia, L. (1995). Lineament anlysis of Landsat Thematic Mapper images, Northern Territory, Australia. Photogrammetric Engineering and Remote Sensing, 61(6), 761-773.
McDermid, G., and Franklin, S. (1995). Remote sensing and geomorphometric discrimination of slope processes. Zeitschrift fur Geomorphologie Supplement, 165-185.
Mejía-Navarro, M., Wohl, E. E., and Oaks, S. D. (1994). Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado A2 - Morisawa, M. In Geomorphology and Natural Hazards (pp. 331-354). Amsterdam: Elsevier.
Montgomery, D. R., Robert H. Wright, P., and Booth, T. (1991). Debris Flow Hazard Mitigation for Colluvium-Filled Swales. Environmental and Engineering Geoscience, xxviii(3), 303-323.
Nandi, A., and Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11-20.
Neuland, H. (1976). A prediction model of landslips. Catena, 3(2), 215-230.
Nilsen, T., and Brabb, E. E. (1977). Slope stability studies in the San Francisco Bay region, California. Geological Society of America. Reviews in Engineering Geology, 3, 235-243.
Ochoa, G. (1978). La influencia de la altitud sobre algunas propiedades fısico-quımicas de los suelos de los Andes venezolanos. Revista Geográfica, 56-72.
Ohlmacher, G. C. (2007). Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Engineering Geology, 91(2), 117-134.
Pradhan, B., and Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13-30.
Riebe, C. S., Kirchner, J. W., and Finkel, R. C. (2004). Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth and Planetary Science Letters, 218(3), 421-434.
Süzen, M. L., and Doyuran, V. (2004). A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental Geology, 45(5), 665-679.
Selby, M. J. (1982). Hillslope materials and processes. Oxford: Oxford University Press.
Siddle, H., Jones, D., and Payne, H. (1991). Development of a methodology for landslip potential mapping in the Rhondda Valley. Slope stability engineering developments and applications: Proceedings of the international conference on slope stability organized by the Institution of Civil Engineers and held on the Isle of Wight on 15–18 April 1991.
Terzaghi, K. (1951). Mechanism of landslides: Harvard University, Department of Engineering.
Turner, A. K., and Schuster, R. L. (1996). Landslides: Investigation and Mitigation. Washington, D.C.: National Research Council.
Van Westen, C. J. (1993). Application of geographic information systems to landslide hazard zonation.
Varnes, D. (1978). Slope movement types and processes. Transportation Research Board Special Report(176).
Vaunat, J., Leroueil, S., and Tavenas, F. (1992). Hazard and risk analysis of slope instability. Proceedings of 1st Canadian symposium on géotechnique and natural hazards (GEOHAZARD’S 92), Vancouver.
Wickham, G., Tiedemann, H., and Skinner, E. H. (1972). Support determinations based on geologic predictions. N Am Rapid Excav & Tunnelling Conf Proc.
Wieczorek, G. (1996). Landslide triggering mechanisms in Turner, AK and Schuster, RL (eds.), 1996, Landslides Investigation and Mitigation, Special Report 247. Transportation Research Board, National Research Council, Washington, DC, 672p, 8.
Wilson, J. P., and Gallant, J. C. (2000). Terrain analysis: principles and applications: John Wiley & Sons.
Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA, 72(1), 1-12.
Yin, K. L., and Yan, T. Z. (1988). Statistical prediction models for slope instability of metamorphosed rocks. Landslides. Proc. 5th symposium, Lausanne, 1988. Vol. 2, 1269-1272.
小出博 (1955),山崩れ, 古今書院 。
水土保持局 (2000),水土保持技術規範 中華民國八十九年三月三十一日行政院農業委員會八十九農林字第八九○○三○三五○號公告。
朱聖心 (2001),應用地理資訊系統製作地震及降雨所引致之山崩危險圖, 國立臺灣大學土木工程學研究所碩士論文 , 。
何幸娟、林伯勳 (2015),神木集水區易致災區域崩塌歷程與關聯性分析,中興工程127), 頁21-32。
李三畏 (1984),台灣崩塌地問題探討,地工技術, 7, 頁43-49。
李浩瑋 (2011)結合 TRIGRS 與 TOPMODEL 預測淺層山崩,中央大學應用地質研究所碩士論文 。
林恩如、劉正千、張智華、鄭依凡、柯明勳 (2013),運用福衛二號高時空分辨率多光譜影像於台灣全島崩塌地判釋與災害分析,航測及遙測學刊, 第十七卷(第1期), 頁31-51。
林慶偉、謝正倫、王文能 (2002),集集地震對中部災區崩塌與土石流之影響, 臺灣之活動斷層與地震災害研討會論文集。
建築研究所 (2011),應用政府環境地質調查資料進行全國山坡地建築安全簡易評估與對策初擬,內政部建築研究所安災組成果報告書 。
張子瑩、徐美玲 (2004),暴雨與地震觸發崩塌發生區位之比較: 以陳有蘭溪流域為例,地理學報35), 頁001-016。
張石角 (1989),陽明山國家公園環境敏感區及潛在災害地區之調查研究, 內政部營建署陽明山國家公園管理處。
張書碩 (2013),Logistic 與 Probit 迴歸方法進行山崩潛勢評估研究-以高雄荖濃溪集水區為例,逢甲大學土地管理所碩士論文。
莊緯璉 (2005),運用判別分析進行山崩潛感分析之研究–以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文 。
陳天健、王建智、謝坤宏、翁孟嘉、吳嘉俊 (2009),莫拉克颱風荖濃溪坡地災害調查,地工技術, 第122期, 頁13-20。
陳天健、李明熹、曾勛苑、顏宏諭、李宗聯、林意修 (2014),南部板岩地質區地震及豪雨誘發山崩之地形特徵-以隘寮溪流域為例,航測及遙測學刊, 18(2), 頁79-92。
陳俞瑾、黃璿宇、陳文福 (2013),應用不安定指數法分析大安溪流域崩塌潛勢之研究,社團法人中華水土保持學會 102年度年會。
陳冠中 (2011),以證據權重法探討崩塌發生之潛勢─以隘寮溪流域為例,長榮大學土地管理與開發學系碩士論文 。
陳樹群、馮智偉 (2005),應用Logistic迴歸繪製崩塌潛感圖-以濁水溪流域為例,中華水土保持學報, 36(2), 頁191-201。
温祐霆 (2015),以羅吉斯回歸,不安定指數及支撐向量機建立景山溪上游集水區山崩潛感推估之比較分析,中興大學水土保持學系所學位論文 。
黃聖慈 (2008),以 GIS 探討台灣濁水溪與烏溪上游崩塌地之影響因子,中興大學土木工程學系所學位論文 。
黃臺豐 (1999),瑞里地震誘發之山崩,國立中央大學應用地質研究所碩士論文 。
溫振宇 (2005),結合地震與颱風因子之山崩模式分析,成功大學地球科學系碩士論文 。
詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015),台灣山區淺層崩塌地特性調查與分析,Journal of Chinese Soil and Water Conservation, 46(1), 頁19-28。
廖軒吾 (2000),集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文 。
劉守恆 (2002),衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學研究所博士論文 。
蘇苗彬、陳毅輝、方俊傑 (2009),應用不安定指數法於坡地崩塌之潛勢分析,水保技術, 4(1), 頁9-23。
鍾育櫻 (2005),921集集大地震前後降雨型崩塌地特徵之比較,地理環境資源學研究所學位論文 。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw