進階搜尋


 
系統識別號 U0026-1708201810403500
論文名稱(中文) 格陵蘭及其周邊地區的環境噪訊特徵
論文名稱(英文) Ambient Seismic Noise Characteristics in Greenland and the Surrounding Area
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 關安達
研究生(英文) Andaru Cahyo Guntoro
學號 L46057011
學位類別 碩士
語文別 英文
論文頁數 109頁
口試委員 指導教授-饒瑞鈞
口試委員-李恩瑞
口試委員-景國恩
口試委員-溫士忠
口試委員-陳映年
中文關鍵字 微震  雙頻  季節性變化  海冰  北大西洋 
英文關鍵字 Microseism  Double Frequency  Seasonal Variation  Sea Ice  North Atlantic Ocean 
學科別分類
中文摘要 格陵蘭島是世界上最大的島嶼,它對全球變暖研究具有重要的作用。冰覆蓋了格陵蘭島幾乎80%的表面,是南極洲之後第二大冰。如果格陵蘭島上所有的冰都融化了,它將導致全球海平面上升7米。我們使用概率密度函數 - 功率譜密度(PDF-PSD)方法研究格陵蘭島及周邊地區的環境地震噪聲。我們將2016 - 2017年的29個地震台站數據處理成PSD和譜圖。從這個PSD和譜圖中,我們可以分為短週期帶(0.1 - 1 s),次級微震帶(3 - 10 s)和初級微震帶(10 - 20 s)。次級微震頻段顯示出每個台站的季節變化,我們可以發現,冬季最高的功率在2月份達到峰值,但是我們可以在夏季7月或8月的高峰期看到最低的功率。我們將每個台站的psd水平分為四類,第二類微積分帶的峰值為5秒,其他類群在4-5秒處具有最大值。所有簇的主要微觀層次都具有相似的模式,在15秒時具有最高值。每個群的短週期帶在0.3-0.4秒期間具有不同的電平,其中群1具有-152dB,群2具有-138dB,群3具有-145dB,並且群4具有-123dB。正如我們所看到的,格陵蘭的氣候系統與氣候系統有關,3號氣象站幾乎全部位於北極氣候,其他氣候群位於亞北極氣候。我們發現,位於格陵蘭中部的所有地震台站,幾乎在全年都出現了二次微積分高峰。然而,幾乎對於位於東部和西部的地震台,它顯示出二至四個月的二次微震的高峰。這意味著位於中部的台站全年的次微秒震源位置不同。因此,我們要調查格陵蘭地區二次微震的工作因素,並了解二次微震震源的位置。我們也想研究格陵蘭島微震帶與氣候系統之間的關係。


英文摘要 Greenland as the biggest island in the world, has an essential role in the global warming research. The ice covers almost 80 % of Greenland’s surface, and it is the second biggest ice on earth after Antarctica. If all the ice on Greenland melted, it will cause the rising of sea level in the world by 7 meters. We study the ambient seismic noise in Greenland and the surrounding area by using the probability density function – power spectral density (PDF-PSD) method. We have processed 34 seismic recording data during 2016 to 2017 for the Z component into PSD and spectrogram. From this PSD and spectrogram, we can divide the result into the short period band (0.1 – 1 s), secondary microseism band (3 – 10 s) and primary microseism band (10 – 20 s). The secondary microseism band shows a seasonal variation for each station, with the highest power level we can find on the winter season with a peak in February, however the lowest power we could see on summer with a peak in July or August. We classify the PSD level for each station into four clusters, one cluster for the secondary microseism band has a peak at 5 second, and the other clusters have a maximum value of 4 -5 second. The primary microseism level for all the clusters have a similar pattern with the highest value at 15 seconds. The short period band for every cluster has a different level with the period at 0.3 – 0.4 second where cluster 1 has -152 dB, cluster 2 has – 138 dB, cluster 3 has -145 dB and cluster 4 has -123 dB, respectively. As we can see the period (3 – 10 s) band is related to the climate system in Greenland, almost all the stations at cluster 1 located in arctic climate zone and the other clusters located in sub-arctic climate zone. We found that all seismic stations which are located in the central part of Greenland, it showed two peaks of secondary microseism almost the whole year. On the other hand, most seismic stations located on the east and west part showed the two peaks of secondary microseism only for two until four months. This means the stations located in central part of Greenland has a different source of secondary microseism for a whole year. Due to this problem, the investigation was conducted to study the factors which work on secondary microseism in Greenland, including the location of the source of secondary microseism band. This study will also learn the connection between microseism band and climate systems in Greenland.
論文目次 Abstract i
摘要 iii
Acknowledgement iv
Contents v
List of Figure vii
List of Table x
Chapter 1. Introduction 1
1.1 Background 2
1.2 Scope of Research 3
1.3 Outline of the Thesis 3
Chapter 2. Greenland and Seismic Ambient Noise 4
2.1 Brief Introduction about Greenland 4
2.1.1 Fact about Greenland 4
2.1.2 Research in Greenland 6
2.2 Seismic Noise in Seismology 7
2.2.1 Seismic Noise 7
2.2.2 Type of Seismic Noise 8
2.2.3 Research in Seismic Noise 10
Chapter 3. Data and Method 12
3.1 Data 12
3.2 Power Spectral Density 14
3.2.1 Preprocessing 18
3.2.2 Power Spectral Density (PSD) 19
3.3 Polarization Method 19
Chapter 4. Result 23
4.1 PSD Result 23
4.1.1 Plot all PSD 23
4.1.2 Spectrogram in Greenland 24
4.1.3 Hierarchical Clustering 28
4.2 Polarization 33
4.2.1 Backazimuth of Primary Microseism 34
4.2.2 Backazimuth of Secondary Microseism 39
4.2.3 Signal Distribution in inland area 44
4.3 Signal Corresponds with temperature 48
Chapter 5. Discussion 54
5.1 Comparison Seasonal Variations Between Arctic and Antarctica Region 54
5.2 Comparison of research in Greenland 56
Chapter 6. Conclusion 58
References 59
Appendix 64
參考文獻 Adolphi, F., Muscheler, R., Svensson, A., Aldahan, A., Possnert, G., Beer, J., et al. (2014). Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nature Geoscience, 7(9), 662–666. https://doi.org/10.1038/ngeo2225
Ardhuin, F., A. Balanche, E. Stutzmann, and M. Obrebski (2012), From seismic noise to ocean wave parameters: General methods and validation, J. Geophys. Res., 117, C05002, doi:10.1029/2011JC007449.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., et al. (2013). A new bed elevation dataset for Greenland. The Cryosphere, 7(2), 499–510. https://doi.org/10.5194/tc-7-499-2013
Bertelli, T. (1872). Osservazoni sui piccoli movimenti dei pendoli in relazione ad alucuni fenomeni meteorologiche, Boll. Meteorol. Osserv. Coll. Roma 9, 10 pp.
Bormann, P., & Wielandt, E. (2013). Seismic Signals and Noise (p. ). https://doi.org/10.2312/GFZ.NMSOP-2_ch4
Bromirski, P. D., Duennebier, F. K., & Stephen, R. A. (2005). Mid-ocean microseisms. Geochemistry, Geophysics, Geosystems, 6(4), Q04009. https://doi.org/10.1029/2004GC000768
Burtin A., Bollinger L., Vergne J., Cattin R., & Nábělek J. L. (2008). Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. Journal of Geophysical Research: Solid Earth, 113(B5). https://doi.org/10.1029/2007JB005034
Cable, S., Christiansen, H. H., Westergaard-Nielsen, A., Kroon, A., & Elberling, B. (2017). Geomorphological and geocryological maps of the Zackenberg Valley, NE Greenland (ArCGIS Map Package) [Data set]. Supplement to: Cable, S et al. (in press): Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans. Geomorphology, https://doi.org/10.1016/j.geomorph.2017.11.003. https://doi.org/10.1594/PANGAEA.883484
Cessaro, R. K. (1994). Sources of primary and secondary microseisms. Bulletin of the Seismological Society of America, 84(1), 142–148.
Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90), 297–301. https://doi.org/10.1090/S0025-5718-1965-0178586-1
Correig, A. M., & Urquizú, M. (2002). Some dynamical characteristics of microseism time-series. Geophysical Journal International, 149(3), 589–598. https://doi.org/10.1046/j.1365-246X.2002.01602.x
Dawes, P. R. (2009). The bedrock geology under the Inland Ice: The next major challenge for Greenland mapping. Geological Survey of Denmark and Greenland Bulletin, (17), 57–60.
Galperin, Yu.I., V.L. Khalipov, V.M. Fillippov, (1986). Signature of rapid subauroral ion drifts in the high-latitude ionosphere structure, Ann. Geophys., 4, 145,.
Greenland in Figures 2017, 14th revised edition pp.24, April 2017, Statistics Greenland
Gutenberg, B. (1958). Two types of microseisms. Journal of Geophysical Research, 63(3), 595–597. https://doi.org/10.1029/JZ063i003p00595
Grob, M., Maggi, A., & Stutzmann, E. (2011). Observations of the seasonality of the Antarctic microseismic signal, and its association to sea ice variability. Geophysical Research Letters, 38(11), L11302. https://doi.org/10.1029/2011GL047525
Hu, A., Meehl, G. A., Han, W., & Yin, J. (2011). Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future. Deep Sea Research Part II: Topical Studies in Oceanography, 58(17), 1914–1926. https://doi.org/10.1016/j.dsr2.2010.10.069
Jensen, D.B., and K.D. Christensen (Eds.). (2003). The biodiversity of Greenland – a county study. Technical Report No. 55. Pinngortitalerifik, Grønlands Naturinstitut, Nuuk, Greenland
Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. (2008). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 464(2091), 777–793. https://doi.org/10.1098/rspa.2007.0277
Koper, K. D., & Hawley, V. L. (2010). Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States. Earthquake Science, 23(5), 439–447. https://doi.org/10.1007/s11589-010-0743-5
Li, T. M. C., J. F. Ferguson, E. Herrin, and H. B. Durham (1984). High-frequency seismic noise at Lajitas, Texas, Bull. Seismol. Soc. Am. 74, 2015–2033.
Logemann, K. and Harms, I. (2006) : High resolution modelling of the North Icelandic Irminger Current (NIIC), Ocean Sci., 2, 291?04. http://www.ocean-sci.net/2/291/2006/
Masson-Delmotte, V., Steen-Larsen, H. C., Ortega, P., Swingedouw, D., Popp, T., Vinther, B. M., et al. (2015). Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions. The Cryosphere Discussions, (9), 1481–1504. https://doi.org/10.5194/tc-9-1481-2015
McNamara, D. E., & Buland, R. P. (2004). Ambient Noise Levels in the Continental United States. Bulletin of the Seismological Society of America, 94(4), 1517–1527. https://doi.org/10.1785/012003001
Oliver, J. and R. Page (1963). Concurrent storms of long and ultralong period microseisms, Bull. Seism. Soc. Am. 53, 15-26.
Park, J., Vernon III, F.L. and Lindberg, C.R. (1987). Frequency dependent polarization analysis of high-frequency seismograms. Journal of Geophysical Research 92: doi: 10.1029/JB080i012p12664. issn: 0148-0227.
Peterson (1993). Observation and modeling of seismic background noise, U.S. Geol. Surv. Tech. Rept. 93-322, 1–95.
Rasmussen, T. L., Thomsen, E., & Moros, M. (2016). North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate. Scientific Reports, 6, 20535. https://doi.org/10.1038/srep20535
Samson, J. C. (1983). The reduction of sample-bias in polarization estimators for multichannel geophysical data with anisotropic noise. Geophysical Journal of the Royal Astronomical Society, 75(2), 289–308. https://doi.org/10.1111/j.1365-246X.1983.tb01927.x
Sergeant, A., Stutzmann, E., Maggi, A., Schimmel, M., Ardhuin, F. & Obrebski, M., 2013. Frequency-dependent noise sources in the North Atlantic Ocean, Geochem. Geophys. Geosyst., 14(12), 5341–5353.
Schimmel, M., Stutzmann, E., Ardhuin, F., & Gallart, J. (2011). Polarized Earth’s ambient microseismic noise. Geochemistry, Geophysics, Geosystems, 12(7), Q07014. https://doi.org/10.1029/2011GC003661
Withers, M. M., R. C. Aster, C. J. Young, and E. P. Chael (1996). High frequency analysis of seismic background noise as a function of wind speed and shallow depth, Bull. Seism. Soc. Am.86,1507–1515.
Young, C. J., E. P. Chael, M. M. Withers, and R. C. Aster (1996). A comparison of high frequency (1 Hz) surface and subsurface noise environment at three sites in the United States, Bull. Seism. Soc. Am. 86,1516 – 1528.
White, L.F., Bailey, I., Foster, G.L., Allen, G., Kelley, S.P., Andrews, J.T., Hogan, K., Dowdeswell, J.A., Storey, C.D., 2016. Tracking the provenance of Greenland-sourced, Holocene aged, individual sand-sized ice-rafted debris using the Pb-isotope compositions of feldspars and 40Ar/39Ar ages of hornblendes. Earth Planet. Sci. Lett. 433, 192–203.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw