進階搜尋


下載電子全文  
系統識別號 U0026-1708201715283400
論文名稱(中文) 富矽氧化物與二氧化鈦超晶格結構電阻式記憶特性研究
論文名稱(英文) Study on resistive random access memory by silicon-rich-oxide/titanium oxide superlattice structure
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 侯冠竹
研究生(英文) Kuan-Chu Hou
學號 N26031495
學位類別 碩士
語文別 中文
論文頁數 107頁
口試委員 指導教授-施權峰
口試委員-李偉民
口試委員-蕭竹芸
口試委員-黃正亮
口試委員-陳逸謙
中文關鍵字 電阻式記憶體  發光二極體  二氧化鈦  矽奈米晶  富矽氧化物  超晶格結構 
英文關鍵字 RRAM  LED  TiO2  Silicon nanocrystal  Silicon-rich-oxide  Superlattice structure 
學科別分類
中文摘要 本論文研究分成兩部分,第一部分使用濺鍍機製程鍍製下電極钼(Mo)、主動層二氧化鈦(TiO2)與上電極,結構為(上電極/TiO2/Mo)。並且使用不同上電極钼、鋁與複合電極來探討電阻轉換特性,發現當使用鋁做為上電極時,其異質接面較易使燈絲形成與斷裂,使得電阻式記憶特性更加明顯。並且利用不同的主動層退火條件與基板加溫鍍膜,來探討熱處理對單層二氧化鈦薄膜電阻式記憶特性之影響。從實驗結果得知,基板加溫能夠使薄膜緻密與增加附著度,而主動層薄膜退火400℃時能得到最多循環次數的電阻轉換特性。
第二部分使用濺鍍機製程鍍製下電極钼、主動層二氧化鈦/矽(Si)/二氧化鈦與上電極鋁,結構為Al/TiO2/SRO/TiO2/Mo。藉由三種主動層薄膜退火條件─未退火、400℃與900℃,去探討矽奈米晶超晶格結構的電阻式記憶特性與矽奈米晶發光現象。由實驗結果得知,未退火之超晶格結構比單層二氧化鈦薄膜具有更佳的電阻轉換特性;而退火400℃時元件同樣具有電阻轉換特性,然其循環次數較單層二氧化鈦結構來得差,此現象歸咎於退火400℃時矽會與氧形成量良好絕緣的富矽氧化物-二氧化矽,並使用HRTEM觀察其結構並進行EDS元素分析,發現中間層矽氧比接近0.5,推測富矽氧化物層經過退火後轉變成非結晶相的富矽氧化物-二氧化矽,使得元件電阻式記憶特性逐漸變差終至失效;經由EDS元素分析在退火900℃之超晶格結構發現中間層富矽氧化物(SRO)中矽含量較退火400℃的多,透過HRTEM觀察發現矽有明顯結晶相,由於先前單層二氧化鈦元件退火900時並沒有電阻切換現象,因此可以推斷其燈絲效應是由富矽氧化物中的矽奈米晶為主,其元件循環次數可高達665次、且高低阻態阻值比約為80。
使用超晶格結構量測光致發光,探討矽奈米晶發光波包與二氧化鈦薄膜的缺陷發光。並且利用更多層討論是否能夠提升發光特性,與接面越多是否會影響記憶特性。
英文摘要 We explored the resistive switching characteristic by changing the annealing temperature through the active layer TiO2 in Al/TiO2/Mo structure. From the experimental results that there were hundreds of resistive switching cycles via the active layer TiO2 400°C annealed. Next, we observed the transform of elemental content in silicon-rich-oxide(SRO) layer by the active layer(TiO2/SRO/TiO2) 400°C and 900°C annealed in Al/TiO2/SRO/TiO2/Mo structure. From the experimental results, the silicon nanocrystal that was found in silicon-rich-oxide dominated the filament switching making seven hundreds of switching cycles when the active layer 900°C annealed. Therefore, we found the light-emitting from the silicon nanocrystal in SRO layer in this process caused by the quantum confined effect.
論文目次 中文摘要 I
Extend Abstract III
致謝 XVI
目錄 XVII
圖目錄 XIX
表目錄 XXVIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 論文架構 4
第二章 文獻回顧 7
2-1 二氧化鈦材料介紹 7
2-2 非揮發性記憶體介紹 8
2-2-1 鐵電記憶體(FeRAM) 9
2-2-2 磁電阻記憶體(MRAM) 9
2-2-3 相變化記憶體(PRAM) 10
2-2-4 電阻式記憶體(RRAM) 11
2-3 電阻轉換機制與電流傳輸機制 20
2-3-1 電阻轉換機制 20
2-3-2 燈絲理論 22
2-3-3 金屬離子遷移 22
2-3-4 電流傳導機制 23
2-4 奈米矽晶材料特性 29
第三章 實驗步驟與儀器量測 34
3-1 實驗流程與架構 34
3-1-1 矽基板準備與清洗 35
3-1-2 下電極鍍製 37
3-1-3 主動層薄膜鍍製 38
3-1-4 主動層薄膜退火 38
3-1-5 上電極鍍製 39
3-1-6 主動層多層結構與氧化鋅鋁鍍製 40
3-2 濺鍍機介紹 41
3-3 量測儀器介紹 42
3-3-1 橢圓偏光儀(Ellipsometer) 42
3-3-2 X光繞射儀(XRD) 43
3-3-3 穿透式電子顯微鏡(TEM) 44
3-3-4 微拉曼及微光激發光譜儀(Micro-Raman&Micro-PL Spectrometer) 46
3-3-5 電壓-電流量測 48
第四章 結果與討論 50
4-1 單層二氧化鈦薄膜分析 50
4-1-1 不同功率與時間參數之二氧化鈦薄膜厚度分析 51
4-1-2 討論不同上電極對電阻式記憶特性影響 52
4-1-3 單層二氧化鈦不同退火條件下電阻式記憶特性 57
4-1-4 使用基板加溫鍍製單層二氧化鈦薄膜 66
4-1-5 使用基板加溫鍍製上電極鋁 71
4-1-6 結論 74
4-2 矽超晶格結構之電阻式記憶特性與光致發光 75
4-2-1 TiO2/SRO/TiO2結構之電阻式記憶特性 75
4-2-2 光致發光 95
4-2-3 結論 98
第五章 總結論與未來規劃 99
5-1 總結論 99
5-2 未來規劃 101
參考文獻 102
參考文獻 [1] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat Mater, vol. 6, pp. 833-840, 11//print 2007.
[2] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, et al., "Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM)," in Digest. International Electron Devices Meeting, 2002, pp. 193-196.
[3] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, et al., "Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses," in IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 2004, pp. 587-590.
[4] C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, "Electrically and optically readable light emitting memories," Sci Rep, vol. 4, p. 5121, Jun 04 2014.
[5] A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon," Nature, vol. 353, pp. 335-338, 09/26/print 1991.
[6] D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, "Quantum Confined Luminescence in $mathrm{Si}/{mathrm{SiO}}_{2}$ Superlattices," Physical Review Letters, vol. 76, pp. 539-541, 01/15/ 1996.
[7] B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, et al., "Luminescence studies of a Si/SiO2 superlattice," Journal of Applied Physics, vol. 92, pp. 3564-3568, 2002.
[8] W. Wei, S. Fujita, and S. S. Wong, "RESET Mechanism of TiOx Resistance-Change Memory Device," IEEE Electron Device Letters, vol. 30, pp. 733-735, 2009.
[9] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, et al., "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nat Nanotechnol, vol. 5, pp. 148-53, Feb 2010.
[10] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, et al., "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition," Journal of Applied Physics, vol. 98, p. 033715, 2005.
[11] C. Yoshida, K. Tsunoda, H. Noshiro, and Y. Sugiyama, "High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application," Applied Physics Letters, vol. 91, p. 223510, 2007.
[12] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt∕TiO[sub 2]∕Pt Stack," Electrochemical and Solid-State Letters, vol. 10, p. G51, 2007.
[13] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices," Nat Nanotechnol, vol. 3, pp. 429-33, Jul 2008.
[14] U. Diebold, "The surface science of TiO2," 2003.
[15] R. Thomas, J. F. Scott, D. N. Bose, and R. S. Katiyar, "Multiferroic thin-film integration onto semiconductor devices," Journal of Physics: Condensed Matter, vol. 22, p. 423201, 2010.
[16] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, et al., "Reliability Study of Phase-Change Nonvolatile Memories," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 422-427, 2004.
[17] D. Kahng and S. M. Sze, "A floating gate and its application to memory devices," The Bell System Technical Journal, vol. 46, pp. 1288-1295, 1967.
[18] C.-Y. Lin, M.-H. Lin, M.-C. Wu, C.-H. Lin, and T.-Y. Tseng, "Improvement of Resistive Switching Characteristics in $hbox {SrZrO} _ {3} $ Thin Films With Embedded Cr Layer," IEEE Electron Device Letters, vol. 29, pp. 1108-1111, 2008.
[19] C. Cheng, A. Chin, and F. Yeh, "Novel ultra-low power RRAM with good endurance and retention," in VLSI Technology (VLSIT), 2010 Symposium on, 2010, pp. 85-86.
[20] F. Zhuge, W. Dai, C. He, A. Wang, Y. Liu, M. Li, et al., "Nonvolatile resistive switching memory based on amorphous carbon," Applied Physics Letters, vol. 96, p. 163505, 2010.
[21] M. Jafar and D. Haneman, "Switching in amorphous-silicon devices," Physical Review B, vol. 49, p. 13611, 1994.
[22] Y. Bernard, P. Gonon, and V. Jousseaume, "Resistance switching of Cu/SiO 2 memory cells studied under voltage and current-driven modes," Applied Physics Letters, vol. 96, p. 193502, 2010.
[23] C. Schindler, G. Staikov, and R. Waser, "Electrode kinetics of Cu–Si O 2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories," Applied physics letters, vol. 94, p. 072109, 2009.
[24] H.-D. Kim, H.-M. An, K. C. Kim, Y. Seo, K.-H. Nam, H.-B. Chung, et al., "Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells," Semiconductor Science and Technology, vol. 25, p. 065002, 2010.
[25] D. Gao, L. Zhang, R. Huang, R. Wang, D. Wu, Y. Kuang, et al., "A novel nitrogen-doped SiO x resistive switching memory with low switching voltages," in Silicon Nanoelectronics Workshop (SNW), 2010, 2010, pp. 1-2.
[26] G. D. Wilk, R. M. Wallace, and J. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," Journal of applied physics, vol. 89, pp. 5243-5275, 2001.
[27] L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, X. Wang, R. Degraeve, et al., "Evidences of oxygen-mediated resistive-switching mechanism in TiNHfO 2Pt cells," Applied Physics Letters, vol. 97, p. 243509, 2010.
[28] T. Hickmott, "Low‐frequency negative resistance in thin anodic oxide films," Journal of Applied Physics, vol. 33, pp. 2669-2682, 1962.
[29] Y. Wu, B. Lee, and H.-S. P. Wong, "$hbox {Al} _ {2}hbox {O} _ {3} $-Based RRAM Using Atomic Layer Deposition (ALD) With 1-$muhbox {A} $ RESET Current," IEEE electron device letters, vol. 31, pp. 1449-1451, 2010.
[30] W. Kim, S. I. Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H.-S. P. Wong, et al., "Forming-free nitrogen-doped AlO X RRAM with sub-μA programming current," in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 22-23.
[31] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, et al., "Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[32] H. Akinaga and H. Shima, "Resistive Random Access Memory (ReRAM) Based on Metal Oxides," Proceedings of the IEEE, vol. 98, pp. 2237-2251, 2010.
[33] I.-S. Park, K.-R. Kim, S. Lee, and J. Ahn, "Resistance switching characteristics for nonvolatile memory operation of binary metal oxides," Japanese journal of applied physics, vol. 46, p. 2172, 2007.
[34] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbé, et al., "Resistive switching in silicon suboxide films," Journal of Applied Physics, vol. 111, p. 074507, 2012.
[35] H. S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, et al., "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
[36] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application," Nano Letters, vol. 9, pp. 1636-1643, 2009/04/08 2009.
[37] M. E. Kiziroglou, X. Li, A. A. Zhukov, P. A. J. de Groot, and C. H. de Groot, "Thermionic field emission at electrodeposited Ni–Si Schottky barriers," Solid-State Electronics, vol. 52, pp. 1032-1038, 2008.
[38] R. Perera, A. Ikeda, R. Hattori, and Y. Kuroki, "Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation," Microelectronic Engineering, vol. 65, pp. 357-370, 2003.
[39] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, pp. 586-613, 2015.
[40] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, p. 151, 1970.
[41] C.-H. Cheng, Y.-C. Lien, C.-L. Wu, and G.-R. Lin, "Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency," Optics Express, vol. 21, pp. 391-403, 2013/01/14 2013.
[42] Z. Lu, D. Lockwood, Baribeau, and JM, "Quantum confinement and light emission in SiO2/Si superlattices," Nature, vol. 378, p. 258, 1995.
[43] N.-M. Park, T.-S. Kim, and S.-J. Park, "Band gap engineering of amorphous silicon quantum dots for light-emitting diodes," Applied Physics Letters, vol. 78, pp. 2575-2577, 2001.
[44] A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, "High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling," Applied Physics Letters, vol. 94, p. 221110, 2009.
[45] A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, "Graded-size Si quantum dot ensembles for efficient light-emitting diodes," Applied Physics Letters, vol. 99, p. 181108, 2011.
[46] D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, "Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere," Journal of Applied Physics, vol. 104, p. 123716, 2008.
[47] S. Kim and Y.-K. Choi, "A Comprehensive Study of the Resistive Switching Mechanism in $hbox{Al/TiO}_{x}/hbox{TiO}_{2}/hbox{Al}$-Structured RRAM," IEEE Transactions on Electron Devices, vol. 56, pp. 3049-3054, 2009.
[48] L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, and Y.-K. Choi, "Structure Effects on Resistive Switching of $hbox {Al/TiO} _ {x}/hbox {Al} $ Devices for RRAM Applications," IEEE Electron Device Letters, vol. 29, pp. 331-333, 2008.
[49] S. Kim and Y.-K. Choi, "A Comprehensive Study of the Resistive Switching Mechanism in $hbox {Al/TiO} _ {x}/hbox {TiO} _ {2}/hbox {Al} $-Structured RRAM," IEEE Transactions on Electron Devices, vol. 56, pp. 3049-3054, 2009.
[50] Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, "Influence of annealing temperature on the properties of titanium oxide thin film," Applied Surface Science, vol. 218, pp. 98-106, 2003.
[51] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, et al., "Band alignment of rutile and anatase TiO2," Nature materials, vol. 12, pp. 798-801, 2013.
[52] M. Butler and D. Ginley, "Prediction of flatband potentials at semiconductor‐electrolyte interfaces from atomic electronegativities," Journal of the Electrochemical Society, vol. 125, pp. 228-232, 1978.
[53] D. Chen, F. Huang, Y. B. Cheng, and R. A. Caruso, "Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high‐performance dye‐sensitized solar cells," Advanced Materials, vol. 21, pp. 2206-2210, 2009.
[54] D. Chen and S.-H. Huang, "Threshold resistance switching in silicon-rich SiO x thin films," Chinese Physics B, vol. 25, p. 117701, 2016.
[55] A. Mehonic, "Resistive Switching in Silicon-rich Silicon Oxide," UCL (University College London), 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-10-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-10-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw