進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1708201701482700
論文名稱(中文) 以硬脂酸增進羥丙基甲基纖維素複合膜疏水性與巨觀尺度下磨潤性質之研究
論文名稱(英文) Improvement of Hydrophobicity and Macro-scale Tribological Performance of HPMC composite films with stearic acid
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 彭耀慶
研究生(英文) Yao-Qing Peng
學號 n16041561
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-施士塵
口試委員-蘇演良
口試委員-林震銘
口試委員-高文顯
中文關鍵字 HPMC/硬脂酸複合材料  親疏水性  摩擦機制  三體 
英文關鍵字 SA/HPMC composites  hydrophobicity  wear mechanism  third bodies 
學科別分類
中文摘要 為解決羥丙基甲基纖維素(HPMC)親水性所帶來的應用問題並增進其巨觀尺度下的磨潤性質,我們將同時具備疏水性與潤滑效果的硬脂酸混入HPMC水溶液製備混合膜披覆於矽基板上,或是將硬脂酸溶液覆蓋於HPMC膜上乾燥後形成雙層結構的雙層膜,對此兩種HPMC/硬脂酸複合材料塗層進行親疏水性以及磨擦機制的研究。
研究結果顯示,混合膜中硬脂酸晶體被包覆於HPMC內部,受到表面粗糙度影響使表面抗濕性減少;而硬脂酸形成花瓣狀結晶分佈於雙層膜的材料表面,同時增加材料的疏水性並減少表面固、液介面的接觸面積,使抗濕效果大幅增加。
磨耗過程中,處於混合膜內部與雙層膜表面的硬脂酸結晶受到應力作用變為碎屑狀磨粒,形成形狀、顆粒大小適中的最佳三體形態後,能留在磨痕內部持續提供潤滑效果,使得HPMC/硬脂酸複合膜的磨潤性質顯著提升。
英文摘要 To improve hydrophobicity and tribology performance of HPMC films, two different methods to produce SA/HPMC composite films, namely blending and coating have been studied in this research.
Contact angle test was used to characterize the hydrophobicity of surfaces; pin-on-disk, 3D profiler and SEM images of worn surface of samples were used for tribological performance analysis.
Experiment results and analysis show that WCA of blending films decrease as SA content increases due to larger surface roughness, whereas the WCA of coating films increase as SA content increases due to the surface geometry effect and hydrophobic nature of SA petal-like crystals on the surface of coating films.
As to tribological properties, with addition of SA, tribological performance of blending and coating films was improved effectively, and the dominant wear mechanism of SA/HPMC composites have also be demonstrated to be formation and development of SA third bodies with appropriate size and shape during wear process.
By this research, applications of HPMC films as packaging and coating materials have been strengthened, and the mechanisms of stearic acid improving hydrophobicity and tribological performance were decrypted as well, which provides a valuable reference for the design of similar cellulose derivatives/fatty acids composites.
論文目次 口試合格證明 I
摘要 II
Extended abstract III
誌謝 XII
總目錄 XIV
表目錄 XVI
圖目錄 XVII
第1章 緒論 1
1-1 前言 1
1-2 研究動機 2
第2章 文獻回顧 3
2-1 綠色磨潤 3
2-2 羥丙基甲基纖維素 7
2-3 硬脂酸 10
2-4 羥丙基甲基纖維素/硬脂酸複合材料 14
2-5 影響磨潤性質之表面粗糙參數 19
2-6 三體理論 26
2-7 聚合物磨潤系統轉移層的生成與發展 31
2-8 結語 36
第3章 實驗內容 37
3-1 實驗目的 37
3-2 實驗簡介 37
3-3 實驗流程 38
3-4 實驗方法 39
3-4-1 基板準備與前處理 39
3-4-2 溶劑蒸發法製備鍍膜與製程參數 40
3-4-3 化學成分分析 43
3-4-4 組織結構和表面幾何性質分析 44
3-4-5 機械性質分析 46
3-4-6 膜厚量測 47
3-4-7 水接觸角實驗 48
3-4-8 磨耗試驗與分析 49
3-5 實驗設備 52
第4章 實驗結果與討論 54
4-1 鍍膜基本性質分析 54
4-1-1 化學成分 54
4-1-2 組織結構與表面幾何性質 60
4-1-3 鍍膜厚度 69
4-1-4 機械性質 70
4-2 親疏水性分析 72
4-2-1 水接觸角實驗結果與表面親疏水性分析 72
4-2-2 表面幾何性質與水接觸角關係之探討 73
4-2-3 WVP試驗結果與塊材親疏水性分析 78
4-3 巨觀尺度下磨潤性質分析 79
4-3-1 混合膜磨耗試驗結果與摩擦機制之探討 79
4-3-2 雙層膜磨耗試驗結果與摩擦機制之探討 89
第5章 結論 102
參考文獻 104
參考文獻 [1] B. Bhushan, Principles and applications of tribology, John Wiley & Sons, (2013).
[2] H. Jost,Tribology: the first 25 years and beyond-achievements, shortcomings and future tasks[tribology, as a word and concept, was first enunciated in a British Government Report, published on 9 March 1966(Jost Report)], Industrial Lubrication and Tribology, 44 (1992) pp.22-27.
[3] W.J. Bartz,Ecotribology: Environmentally acceptable tribological practices, Tribology International, 39 (2006) pp.728-733.
[4] S.-w. Zhang,Green tribology: Fundamentals and future development, Friction, 1 (2013) pp.186.
[5] M. Nosonovsky, B. Bhushan, Green Tribology, Springer, (2012).
[6] S. Alves, B. Barros, M. Trajano, K. Ribeiro, E. Moura,Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions, Tribology International, 65 (2013) pp.28-36.
[7] C.J. Reeves, P.L. Menezes, T.-C. Jen, M.R. Lovell,The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants, Tribology International, 90 (2015) pp.123-134.
[8] C.J. Reeves, P.L. Menezes, M.R. Lovell, T.-C. Jen,The influence of surface roughness and particulate size on the tribological performance of bio-based multi-functional hybrid lubricants, Tribology International, 88 (2015) pp.40-55.
[9] T.K. Nguyen, I. Do, P. Kwon,A tribological study of vegetable oil enhanced by nano-platelets and implication in MQL machining, International Journal of Precision Engineering and Manufacturing, 13 (2012) pp.1077-1083.
[10] Y. Kondo, S. Sasaki, T. Koyama, Tribological properties of ionic liquids, INTECH Open Access Publisher, (2013).
[11] W. Liu, C. Ye, Q. Gong, H. Wang, P. Wang,Tribological performance of room-temperature ionic liquids as lubricant, Tribology Letters, 13 (2002) pp.81-85.
[12] C. Ye, W. Liu, Y. Chen, L. Yu,Room-temperature ionic liquids: a novel versatile lubricant, Chemical Communications, (2001) pp.2244-2245.
[13] M. Palacio, B. Bhushan,A review of ionic liquids for green molecular lubrication in nanotechnology, Tribology Letters, 40 (2010) pp.247-268.
[14] A. Marmur,The lotus effect: superhydrophobicity and metastability, Langmuir, 20 (2004) pp.3517-3519.
[15] D. Ebert, B. Bhushan,Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles, Journal of colloid and interface science, 384 (2012) pp.182-188.
[16] B. Bhushan, M. Nosonovsky,The rose petal effect and the modes of superhydrophobicity, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010) pp.4713-4728.
[17] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang,Petal effect: a superhydrophobic state with high adhesive force, Langmuir, 24 (2008) pp.4114-4119.
[18] R. Wool, X.S. Sun, Bio-based polymers and composites, Academic Press, (2011).
[19] V.K. Rastogi, P. Samyn,Bio-based coatings for paper applications, Coatings, 5 (2015) pp.887-930.
[20] S.-C. Shi, T.-F. Huang,Raman study of HPMC biopolymer transfer layer formation under tribology test, Optical and Quantum Electronics, 48 (2016) pp.532.
[21] W. Jablonska, in, Sheffield Hallam University, (2011).
[22] 黃騰鋒,羥丙基甲基纖維素綠色薄膜自我修復與磨潤性質研究, 成功大學機械工程學系學位論文, (2016) pp.1-64.
[23] S.-C. Shi, F.-I. Lu,Biopolymer Green Lubricant for Sustainable Manufacturing, Materials, 9 (2016) pp.338.
[24] A. Fatimi, J.-F. Tassin, R. Turczyn, M.A. Axelos, P. Weiss,Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization, Acta biomaterialia, 5 (2009) pp.3423-3432.
[25] G.A. Burdock,Safety assessment of hydroxypropyl methylcellulose as a food ingredient, Food and Chemical Toxicology, 45 (2007) pp.2341-2351.
[26] M.M. Al-Tabakha,HPMC capsules: current status and future prospects, Journal of Pharmacy & Pharmaceutical Sciences, 13 (2010) pp.428-442.
[27] R. Zúñiga, O. Skurtys, F. Osorio, J. Aguilera, F. Pedreschi,Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure, Carbohydrate polymers, 90 (2012) pp.1147-1158.
[28] P.A. Simmons, P.C. Donshik, W.F. Kelly, J.G. Vehige,Conditioning of hydrogel lenses by a multipurpose solution containing an ocular lubricant, Eye & Contact Lens, 27 (2001) pp.192&hyhen.
[29] S.-C. Shi, T.-F. Huang, J.-Y. Wu,Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate, Materials, 8 (2015) pp.1738-1751.
[30] S.-C. Shi, T.-F. Huang,Self-Healing Materials for Ecotribology, Materials, 10 (2017) pp.91.
[31] 吳振宇,羥丙基甲基纖維素複合薄膜添加二硫化鉬之微結構與磨潤特性研究, 成功大學機械工程學系學位論文, (2016) pp.1-77.
[32] S.-C. Shi, J.-Y. Wu, T.-F. Huang, Y.-Q. Peng,Improving the tribological performance of biopolymer coating with MoS 2 additive, Surface and Coatings Technology, (2016).
[33] S.-C. Shi, J.-Y. Wu, T.-F. Huang,Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant, Optical and Quantum Electronics, 48 (2016) pp.474.
[34] R. Sothornvit,Effect of hydroxypropyl methylcellulose and lipid on mechanical properties and water vapor permeability of coated paper, Food research international, 42 (2009) pp.307-311.
[35] R. Villalobos, P. Hernández-Muñoz, A. Chiralt,Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films, Food Hydrocolloids, 20 (2006) pp.502-509.
[36] L. Sirghi,Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts, Applied Physics Letters, 82 (2003) pp.3755-3757.
[37] H. Barsett, A. Ebringerová, S. Harding, T. Heinze, Z. Hromádková, C. Muzzarelli, R. Muzzraelli, B. Paulsen, O. ElSEOUD, T. Heinze, Polysaccharides I: Structure, characterisation and use, Springer Science & Business Media, (2005).
[38] G. Biresaw, C. Carriere,Correlation between mechanical adhesion and interfacial properties of starch/biodegradable polyester blends, Journal of Polymer Science Part B: Polymer physics, 39 (2001) pp.920-930.
[39] M.L. Free, Introduction to Surfactants, in: Surfactants in Tribology, Volume 1, CRC Press, (2008).
[40] M. He, M. Xu, L. Zhang,Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface, ACS applied materials & interfaces, 5 (2013) pp.585-591.
[41] N. Garoff, S. Zauscher,The influence of fatty acids and humidity on friction and adhesion of hydrophilic polymer surfaces, Langmuir, 18 (2002) pp.6921-6927.
[42] J. Menter, D. Tabor, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, (1951), pp. 514-524.
[43] B. Briscoe, D. Evans, D. Tabor,The influence of contact pressure and saponification on the sliding behavior of stearic acid monolayers, Journal of Colloid and Interface Science, 61 (1977) pp.9-13.
[44] F. Bowden, J. Gregory, D. Tabor,Lubrication of metal surfaces by fatty acids, Nature, 156 (1945) pp.97-101.
[45] C.K. Kajdas,Importance of the triboemission process for tribochemical reaction, Tribology International, 38 (2005) pp.337-353.
[46] S. Loehlé, C. Matta, C. Minfray, T. Le Mogne, R. Iovine, Y. Obara, A. Miyamoto, J. Martin,Mixed lubrication of steel by C18 fatty acids revisited. Part I: Toward the formation of carboxylate, Tribology International, 82 (2015) pp.218-227.
[47] Q. Zhang, Y. Wan, Y. Li, S. Yang, W. Yao,Friction reducing behavior of stearic acid film on a textured aluminum substrate, Applied Surface Science, 280 (2013) pp.545-549.
[48] R.R. Sahoo, S. Biswas,Frictional response of fatty acids on steel, Journal of colloid and Interface Science, 333 (2009) pp.707-718.
[49] J. Crowell, J. Chen, J. Yates Jr,A vibrational study of the adsorption and decomposition of formic acid and surface formate on Al (111), The Journal of chemical physics, 85 (1986) pp.3111-3122.
[50] R.D. Hagenmaier, P.E. Shaw,Moisture permeability of edible films made with fatty acid and hydroxypropyl methyl cellulose, Journal of Agricultural and Food Chemistry, 38 (1990) pp.1799-1803.
[51] A. Jiménez, M. Fabra, P. Talens, A. Chiralt,Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids, Carbohydrate Polymers, 82 (2010) pp.585-593.
[52] A. Fahs, M. Brogly, S. Bistac, M. Schmitt,Hydroxypropyl methylcellulose (HPMC) formulated films: Relevance to adhesion and friction surface properties, Carbohydrate Polymers, 80 (2010) pp.105-114.
[53] C. Tanford,Theory of micelle formation in aqueous solutions, The Journal of Physical Chemistry, 78 (1974) pp.2469-2479.
[54] A. Jarray, V. Gerbaud, M. Hemati,Stearic acid crystals stabilization in aqueous polymeric dispersions, Chemical Engineering Research and Design, 110 (2016) pp.220-232.
[55] P. Ettl, B. Schmidt, M. Schenk, I. Laszlo, G. Haeusler, in: Proc. SPIE, (1998), pp. 133-140.
[56] B. Bhushan, Handbook of micro/nano tribology, CRC press, (1998).
[57] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, H. Soliman,Roughness parameters, Journal of Materials Processing Technology, 123 (2002) pp.133-145.
[58] J. Greenwood, J.P. Williamson, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, (1966), pp. 300-319.
[59] Z. Handzel-Powierza, T. Klimczak, A. Polijaniuk,On the experimental verification of the Greenwood-Williamson model for the contact of rough surfaces, Wear, 154 (1992) pp.115-124.
[60] L.P. Lin, J.F. Lin,A new method for elastic-plastic contact analysis of a deformable sphere and a rigid flat, Journal of tribology, 128 (2006) pp.221-229.
[61] S. Derler, G.-M. Rotaru, W. Ke, L. El Issawi-Frischknecht, P. Kellenberger, A. Scheel-Sailer, R. Rossi,Microscopic contact area and friction between medical textiles and skin, journal of the mechanical behavior of biomedical materials, 38 (2014) pp.114-125.
[62] M. Sedlaček, B. Podgornik, J. Vižintin,Influence of surface preparation on roughness parameters, friction and wear, Wear, 266 (2009) pp.482-487.
[63] N. Chand, A. Naik, S. Neogi,Three-body abrasive wear of short glass fibre polyester composite, Wear, 242 (2000) pp.38-46.
[64] E. Rabinowicz, L. Dunn, P. Russell,A study of abrasive wear under three-body conditions, Wear, 4 (1961) pp.345-355.
[65] R. Trezona, D. Allsopp, I. Hutchings,Transitions between two-body and three-body abrasive wear: influence of test conditions in the microscale abrasive wear test, Wear, 225 (1999) pp.205-214.
[66] S. Bahadur,The development of transfer layers and their role in polymer tribology, Wear, 245 (2000) pp.92-99.
[67] N. Myshkin, M. Petrokovets, A. Kovalev,Tribology of polymers: adhesion, friction, wear, and mass-transfer, Tribology International, 38 (2006) pp.910-921.
[68] M. Conte, A. Igartua,Study of PTFE composites tribological behavior, Wear, 296 (2012) pp.568-574.
[69] L. Chang, K. Friedrich,Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms, Tribology international, 43 (2010) pp.2355-2364.
[70] M.N. Gardos,The synergistic effects of graphite on the friction and wear of MoS2 films in air, Tribology Transactions, 31 (1988) pp.214-227.
[71] I. Iordanoff, Y. Berthier, S. Descartes, H. Heshmat,A review of recent approaches for modeling solid third bodies, Journal of Tribology, 124 (2002) pp.725-735.
[72] Y. Berthier, M. Godet, M. Brendle,Velocity accommodation in friction, Tribology Transactions, 32 (1989) pp.490-496.
[73] Y. Berthier,Experimental evidence for friction and wear modelling, Wear, 139 (1990) pp.77-92.
[74] S. Descartes, Y. Berthier,Rheology and flows of solid third bodies: background and application to an MoS 1.6 coating, Wear, 252 (2002) pp.546-556.
[75] G. Colas, A. Saulot, C. Godeau, Y. Michel, Y. Berthier,Decrypting third body flows to solve dry lubrication issue–MoS 2 case study under ultrahigh vacuum, Wear, 305 (2013) pp.192-204.
[76] M. Godet,Third-bodies in tribology, Wear, 136 (1990) pp.29-45.
[77] D.L. Burris, W.G. Sawyer,Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles, Wear, 260 (2006) pp.915-918.
[78] J. Ye, D.L. Burris, T. Xie,A Review of Transfer Films and Their Role in Ultra-Low-Wear Sliding of Polymers, Lubricants, 4 (2016) pp.4.
[79] J. Ye, H. Khare, D. Burris,Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite, Wear, 297 (2013) pp.1095-1102.
[80] K.L. Harris, J.F. Curry, A.A. Pitenis, K.G. Rowe, M.A. Sidebottom, W.G. Sawyer, B.A. Krick,Wear debris mobility, aligned surface roughness, and the low wear behavior of filled polytetrafluoroethylene, Tribology Letters, 60 (2015) pp.1-8.
[81] J. Ye, A. Moore, D. Burris,Transfer film tenacity: A case study using ultra-low-wear alumina–PTFE, Tribology Letters, 59 (2015) pp.1-11.
[82] K.L. Harris, A.A. Pitenis, W.G. Sawyer, B.A. Krick, G.S. Blackman, D.J. Kasprzak, C.P. Junk,PTFE tribology and the role of mechanochemistry in the development of protective surface films, Macromolecules, 48 (2015) pp.3739-3745.
[83] T. Onodera, K. Kawasaki, T. Nakakawaji, Y. Higuchi, N. Ozawa, K. Kurihara, M. Kubo,Effect of tribochemical reaction on transfer-film formation by poly (tetrafluoroethylene), The Journal of Physical Chemistry C, 118 (2014) pp.11820-11826.
[84] B. Briscoe,Wear of polymers: an essay on fundamental aspects, Tribology International, 14 (1981) pp.231-243.
[85] S. Bahadur, C. Sunkara,Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO 2, ZnO, CuO and SiC, Wear, 258 (2005) pp.1411-1421.
[86] S. Bahadur, D. Tabor,The wear of filled polytetrafluoroethylene, Wear, 98 (1984) pp.1-13.
[87] Y. Mergler, R. Schaake, A. Huis,Material transfer of POM in sliding contact, Wear, 256 (2004) pp.294-301.
[88] N. Fillot, I. Iordanoff, Y. Berthier,Wear modeling and the third body concept, Wear, 262 (2007) pp.949-957.
[89] S. Descartes, C. Godeau, Y. Berthier,Friction and lifetime of a contact lubricated by a solid third body formed from an MoS 1.6 coating at low temperature, Wear, 330 (2015) pp.478-489.
[90] J. Ye, H. Khare, D. Burris,Quantitative characterization of solid lubricant transfer film quality, Wear, 316 (2014) pp.133-143.
[91] L. Chang, K. Friedrich, L. Ye,Study on the transfer film layer in sliding contact between polymer composites and steel disks using nanoindentation, Journal of Tribology, 136 (2014) pp.021602.
[92] R.L. Fusaro,Self-lubricating polymer composites and polymer transfer film lubrication for space applications, Tribology International, 23 (1990) pp.105-122.
[93] R. Leach, H. Haitjema,Bandwidth characteristics and comparisons of surface texture measuring instruments, Measurement Science and Technology, 21 (2010) pp.032001.
[94] A. Bolshakov, G. Pharr,Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, Journal of materials research, 13 (1998) pp.1049-1058.
[95] D. Newey, M. Wilkins, H. Pollock,An ultra-low-load penetration hardness tester, Journal of Physics E: Scientific Instruments, 15 (1982) pp.119.
[96] C. Chuenarrom, P. Benjakul, P. Daosodsai,Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin, Materials Research, 12 (2009) pp.473-476.
[97] S. Sahoo, C.K. Chakraborti, S.C. Mishra, S. Naik,Analytical characterization of a gelling biodegradable polymer, (2011).
[98] G. Velazquez, A. Herrera-Gómez, M. Martı́n-Polo,Identification of bound water through infrared spectroscopy in methylcellulose, Journal of Food Engineering, 59 (2003) pp.79-84.
[99] C. Liang, R. Marchessault,Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.− 1, Journal of Polymer Science, 39 (1959) pp.269-278.
[100] F. Kimura, J. Umemura, T. Takenaka,FTIR-ATR studies on Langmuir-Blodgett films of stearic acid with 1-9 monolayers, Langmuir, 2 (1986) pp.96-101.
[101] B. Briscoe, D. Tabor,Shear properties of thin polymeric films, The Journal of Adhesion, 9 (1978) pp.145-155.
[102] K. Holmberg, A. Mathews,Coatings tribology: a concept, critical aspects and future directions, Thin Solid Films, 253 (1994) pp.173-178.
[103] C. Piao, J.E. Winandy, T.F. Shupe,From hydrophilicity to hydrophobicity: A critical review: Part I. Wettability and surface behavior, Wood and Fiber Science, 42 (2010) pp.490-510.
[104] K. Kubiak, M. Wilson, T. Mathia, P. Carval,Wettability versus roughness of engineering surfaces, Wear, 271 (2011) pp.523-528.
[105] K. Kubiak, T. Mathia, M. Wilson, in: Proceedings of Fourteenth International Congress of Metrology. Paris, France, (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw