進階搜尋


下載電子全文  
系統識別號 U0026-1708201616181200
論文名稱(中文) 應用地電阻影像剖面法探勘高雄燕巢地區滾水坪泥火山地下通道
論文名稱(英文) Imaging mud fluid conduits of the Gunshuiping mud volcano with Electric Resistivity Methods
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 廖伶榕
研究生(英文) Ling-Rong Liao
電子信箱 albee2728726@yahoo.com.tw
學號 L46031170
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-樂鍇‧祿璞崚岸
口試委員-楊耿明
共同指導教授-張竝瑜
中文關鍵字 地電阻影像剖面法  電阻率  泥火山 
英文關鍵字 ERT  Mud Volcano  Resistivity 
學科別分類
中文摘要 泥火山形成的條件為高壓氣體、水及泥岩,三者缺一不可。越來越多研究指出,泥火山與天然氣水合物之間關係相當密切,泥火山的流體來源為天然氣水合物解離混合古海沉積水,甚至是其演化而來。泥火山是全球重要的甲烷溢氣管道,因此,泥火山是重要的地形景觀。台灣位處歐亞板塊及菲律賓海板塊交界,板塊運動導致台灣有許多斷層活動,斷層活動使地層中存在許多裂隙,而泥火山泥漿湧升的通道為地層中的裂隙位置。本研究的動機為了解斷層活動與泥火山之間的關係,因此在此使用地球物理方法-地電阻影像剖面法探勘泥火山地下通道,並在實驗室進行泥岩含水量實驗,瞭解地層中體積含水量情形,以期對未來長期監測提供背景資料。
滾水坪泥火山位於台灣西南部約175-m × 90-m的平原上,本研究在此進行十三條測線,並使用Wenner陣列。對照現地觀察之三個噴發口(由東至西為噴發口一、二及三)及二維剖面圖、三維電阻率模型與體積含水量圖,噴發口與低電阻及高體積含水量區域良好吻合。現地進行單點測量,發現泥漿的電阻率約為4 ohm-m以下,比對二維剖面圖與三維電阻率模型,滾水坪泥火山系統主要泥漿湧升通道位於噴發口三(最西邊)下方偏北處,並在地表下約5-12公尺處向東漫流,與東邊兩個噴發口彼此相通。而在噴發口三下方約3-14公尺,存在一個低電阻區域,推測為泥漿噴發至地表前暫存的位置。
英文摘要 We conducted the resistivity survey at the Gunshuiping mud volcano and produced a 3D model in order to delineate the mud-fluid conduits in the mud volcano system. The Gunshuiping mud volcano is located in a 175-m × 90-m platform in Southwest of Taiwan. There are three main mud-volcano craters: craters 1, 2 and 3. Crater 3 is active and the others are inactive.
We conducted thirteen survey lines using the Wenner configuration to obtain the resistivity profile images. The lengths of the lines are about 155 m and 60 m, which can resolve the resistivity image down to 30 m and 10 m in depth, respectively.
The results showed that there is a vertical structure under the crater 3, and we suggest that it is the mud-fluid conduit. There is a chamber at a depth between 3 and 14 m, and we interpreted that is the temporary storage of mud fluid during the erupting process. Beneath the craters 1 and 2, there is a near-surface, horizontal conduit connecting the craters 1 and 2. At depth between 5 and 12 m, the vertical conduit beneath the north of crater 3 and the horizontal conduit beneath the craters 1 and 2 are connected. The resistivity images clearly delineate the conduit underneath the craters and suggest that the crater 3 is the main erupting conduit, which is consistent to the surface features, in the Gunshuiping mud volcano system.
論文目次 摘要 I
EXTENDED ABSTRACT III
致謝 XIV
目錄 XVI
圖目錄 XX
表目錄 XXIII
第一章、緒論 1
1.1 前言 1
1.2 文獻回顧 5
1.3 研究動機與目的 6
第二章、研究區域概述 8
2.1 台灣泥岩分布概況 8
2.2 泥火山簡介與台灣泥火山分布概況 9
2.3 滾水坪泥火山簡介與區域地質概況 15
第三章、研究方法與原理 21
3.1 地電阻影像剖面法簡介 21
3.2 基本原理 22
3.3 施測方法 26
3.4 施測儀器 29
3.5 資料處理 31
3.6 土壤體積含水量與電阻率關係式建立方法 35
第四章、地電阻影像剖面法探測結果與討論 37
4.1 測線183、193及199結果與討論 43
4.2 測線171、173、175、177、179及181結果與討論 47
4.3 測線185、187、194及196結果與討論 52
4.4 綜合討論 55
第五章、體積含水量與電阻率變化關係試驗 58
5.1 採樣地點與採樣方法 58
5.2 實驗方法 59
5.3 結果與討論 61
第六章、結論及建議 73
參考文獻 75
附錄一:含水量實驗數據 83
編號一 83
編號二 84
編號三 85
編號四 86
編號五 87
編號六 88
編號七 89
編號八 90
編號九 91
編號十 92
附錄二:十個採樣點之含水量與電阻率關係曲線 93
編號一 93
編號二 93
編號三 94
編號四 94
編號五 95
編號六 95
編號七 96
編號八 96
編號九 97
編號十 97

參考文獻 [1] Bishop, I., & Koor, N. P. (2000). Integrated geophysical and geotechnical investigations of old masonry retaining walls in Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 33(4), 335-349.
[2] Chang, P. Y., Yang, T. Y., Chyi, L. L., & Hong, W. L. (2010). Electrical resistivity variations before and after the Pingtung earthquake in the Wushanting mud volcano area in southwestern Taiwan. Journal of Environmental & Engineering Geophysics, 15(4), 219-231.
[3]Chang, P. Y., Chang, S. K., Liu, H. C., & Wang, S. C. (2011). Using integrated 2D and 3D resistivity imaging methods for illustrating the mud-fluid conduits of the Wushanting Mud Volcanoes in Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 22, 1-14.
[4]Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289-300.
[5]deGroot-Hedlin, C., & Constable, S. (1990). Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613-1624.
[6]Dimitrov, L. I. (2002). Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1), 49-76.
[7]Fertl, W. H., & Timko, D. J. (1970). Occurrence and significance of abnormal-pressure formations. Oil and Gas Journal, 5, 97-108.
[8]Hedberg, H. D. (1980). Methane generation and petroleum migration:Geologist studies in geology 10, Roberts, W.H., and Cordell, R.J. (eds.), The American Association of Petroleum Geologist, Tulsa, 179-206.
[9]Higgins, G.E., and Saunders, J.B. (1974). Mud volcanoes - their nature and origin:Contribution to geology and paleobiology of the caribbean and adjacent areas. Verhandlungen Naturforschenden Gesellschaft Basel 84, 101-152.
[10]Huang, I. L., Teng, L. S., Liu, C. S., Reed, D. L., & Lundberg, N. (1992). Structural styles of offshore southwestern Taiwan. EOS, 73, 539.
[11]Inman, J. R. (1975). Resistivity inversion with ridge regression. Geophysics, 40(5), 798-817.
[12]Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting, 517.
[13]Legault, J. M., Carriere, D., & Petrie, L. (2008). Synthetic model testing and distributed acquisition dc resistivity results over an unconformity uranium target from the Athabasca Basin, northern Saskatchewan. The Leading Edge, 27(1), 46-51.
[14]Linderholm, P., Marescot, L., Loke, M. H., & Renaud, P. (2008). Cell culture imaging using microimpedance tomography. Biomedical Engineering, 55(1), 138-146.
[15]Liu, C. S., Huang, I. L., & Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology, 137(3), 305-319.
[16]Loke, M. H., Acworth, I., & Dahlin, T. (2003). A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34(3), 182-187.
[17]Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135-156.
[18]Lupi, M., Ricci, B. S., Kenkel, J., Ricci, T., Fuchs, F., Miller, S. A., & Kemna, A. (2016). Subsurface fluid distribution and possible seismic precursory signal at the Salse di Nirano mud volcanic field, Italy. Geophysical Journal International, 204(2), 907-917.
[19]Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1), 29-42.
[20]Olayinka, A. I., & Yaramanci, U. (2000). Use of block inversion in the 2-D interpretation of apparent resistivity data and its comparison with smooth inversion. Journal of Applied Geophysics, 45(2), 63-81.
[21]Reynolds, J. M. (2011). Electrical resistivity methods. An introduction to applied and environmental geophysics, 267-329.
[22]Rucker, D. F., Loke, M. H., Levitt, M. T., & Noonan, G. E. (2010). Electrical-resistivity characterization of an industrial site using long electrodes. Geophysics, 75(4), 95-104.
[23]Shih, T. T. (1967). A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud. Petroleum Geology, Taiwan, 5, 259-311.
[24]Storz, H., Storz, W., & Jacobs, F. (2000). Electrical resistivity tomography to investigate geological structures of the earth's upper crust. Geophysical Prospecting, 48(3), 455-471.
[25]Stride, A. H., Belderson, R. H., & Kenyon, N. H. (1982). Structural grain, mud volcanoes and other features on the Barbados Ridge Complex revealed by Gloria long-range side-scan sonar. Marine Geology, 49(1), 187-196.
[26]Tsokas, G. N., Tsourlos, P. I., Vargemezis, G., & Novack, M. (2008). Non‐destructive electrical resistivity tomography for indoor investigation: the case of Kapnikarea Church in Athens. Archaeological Prospection, 15(1), 47-61.
[27]Wilson, S. R., Ingham, M., & McConchie, J. A. (2006). The applicability of earth resistivity methods for saline interface definition. Journal of Hydrology, 316(1), 301-312.
[28]Wolke, R., & Schwetlick, H. (1988). Iteratively reweighted least squares: Algorithms, convergence analysis, and numerical comparisons. SIAM journal on scientific and statistical computing, 9(5), 907-921.
[29]Zeyen, H., Pessel, M., Ledésert, B., Hébert, R., Bartier, D., Sabin, M., & Lallemant, S. (2011). 3D electrical resistivity imaging of the near-surface structure of mud-volcano vents. Tectonophysics, 509(3), 181-190.
[30]王鑫、徐美玲、楊建夫(1988),台灣泥火山地形景觀,台灣省立博物館年刊,31-48頁。
[31]王子賓(2005),結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究,國立中央大學應用地質研究所碩士論文,共84頁。
[32]尤仁弘(2006),應用地電阻影像法於壩體潛在滲漏調查之研究,國立交通大學土木工程學系研究所碩士論文,共161頁。
[33]石再添(1967),臺灣活泥火山的調查及其類型與噴泥性質之關係的研究,台灣石油地質,第5號,259-311頁。
[34]何春蓀(1986),台灣地質概論:台灣地質圖說明書,台北:經濟部中央地質調查所,共164頁。
[35]林哲毅(2009),土壤電阻率與含水特性關係之探討,國立交通大學土木工程學系碩士論文,共116頁。
[36]林啟文(2013),五萬分之一台灣地質圖說明書圖幅第五十六號-旗山,台北:經濟部中央地質調查所,共93頁。
[37]林瑞騏(2014),應用地電阻法初勘池上斷層在電光地區地下電性分布,國立成功大學地球科學研究所碩士論文,共69頁。
[38]洪彥豪(2004),應用地電阻影像剖面法於湖口斷層之研究,國立中央大學應用地質研究所碩士論文,共83頁。
[39]洪瑛鈞(2013),地電阻影像探測在地工調查之應用與問題探討,國立交通大學土木工程學系研究所博士論文,共243頁。
[40]夏龍源、柳國欽(2006),泥火山的景觀價值與保育,地質,第二十五卷(2),37-38頁。
[41]姚奕全(2007),應用地電阻法於崩積層含水特性調查與監測之初探,國立交通大學土木工程學系碩士論文,共138頁。
[42]倪勝火(2015),土壤力學實驗手冊,國立成功大學土木工程學系,14-17頁。
[43]陳佑邦(2001),應用地電阻影像剖面法於新城斷層之研究,國立中央大學應用地質研究所碩士論文,共69頁。
[44]陳宜傑(2004),應用地電阻法於土石流地滑之研究,國立中央大學應用地質研究所碩士論文,共117頁。
[45]陳利貞(2006),泥火山的奇妙樂章,地質,第二十五卷(2),18-29頁。
[46]陳力齊(2007),應用地電阻量測方法於環境監測與實驗室入滲試驗技術之研究,嘉南藥理科技大學環境工程與科學系碩士論文,共95頁。
[47]陳俊价(2008),古亭坑層泥岩含水量對力學特性影響之研究,成功大學土木工程學研究所碩士論文,共147頁。
[48]陳泓幃(2010),利用二維地電阻探測方法調查彰化地區濁水溪沖積扇頂地下水補注區邊界之研究,國立臺灣海洋大學應用地球科學研究所碩士論文,共68頁。
[49]郭魁士 (1976),土壤實驗,屏東:中國書局,9-65頁。
[50]黃合竹(2007),泥火山噴發活動之研究─以烏山頂與新養女湖為例,國立台南大學社會科教育學系碩士論文,共81頁。
[51]張宏武(2001),台灣西南泥岩之電阻率構造,國立中央大學地球物理研究所碩士論文,共112頁。
[52]董彥閔(2011),地電阻影像法於古蹟遺址探測與大地環境應用之研究,國立成功大學土木工程研究所碩士論文,共205頁。
[53]葉高華(2003),由流體地球化學探討台灣泥火山的成因,台灣大學海洋研究所碩士論文,共61頁。
[54]楊燦堯(2006),泥火山噴氣所帶來地底的訊息,地質,第二十五卷(2),30-36頁。
[55]趙鴻椿(2003),臺灣地區泥火山氣體成分分析及其對全球甲烷來源的可能影響,成功大學地球科學研究所碩士論文,共81頁。
[56]鄭婷文(2013),台灣泥火山與熱泉之微生物生態系統與碳硫循環,台灣大學地質科學研究所博士論文,共148頁。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw