進階搜尋


下載電子全文  
系統識別號 U0026-1708201610182900
論文名稱(中文) 藉由高頻GNSS與寬頻地震資料進行台灣區域表面波分析
論文名稱(英文) Analysis of Surface Wave Recorded by High-Rate GNSS and Broadband Seismic Stations in the Taiwan Region
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 陳偉誠
研究生(英文) Wei-Cheng Chen
電子信箱 weicheng0612@gmail.com
學號 l46031099
學位類別 碩士
語文別 英文
論文頁數 90頁
口試委員 指導教授-饒瑞鈞
口試委員-梁文宗
口試委員-黃柏壽
口試委員-李恩瑞
口試委員-景國恩
中文關鍵字 全球衛星導航系統(GNSS)  後達波  速度構造  琉球島弧系統 
英文關鍵字 Global Navigation Satellite System (GNSS)  Later phase  Velocity structure  Ryukyu Trench-Arc system 
學科別分類
中文摘要 我們收集了台灣區域的1-Hz GNSS測站與寬頻地震測站在2011年Mw 9.0 Tohoku地震與2012年Mw 8.6 Sumatra地震的資料,進行遠震之表面波分析,在GNSS解算上使用GIPSY 6.3軟體進行每秒的精密單點定位(Precise Point Position),並使用帶通濾波(band-pass filter, 0.008-0.08Hz)後GNSS與寬頻地震站之波形相關係數在0.86到0.92之間,而我們使用台灣與琉球區域的GNSS測站在沖繩海槽區域進行表面波的速度構造反演,其結果中發現在沖繩海槽區域深度約30公里以上有明顯的低速帶(low-velocity zone),此區域可以指示在沖繩海槽為弧後的擴張區域與熱對流上升之主要位置。除此之外,在觀測2011 Mw 9.0 Tohoku地震的Love wave表現中,在台灣西半部前陸盆地發現有明顯的後達波(later phase),此在頻率域分析約為15-25秒周期之訊號,此訊號主要是受到淺部地殼(約20公里以上之深度)的影響,在單站頻散分析中,後達波之訊號主要在台灣逆衝前緣以西的區域產生,且後達波的振幅可以反映出台灣西部前陸盆地之沉積物厚度變化,而經由後達波在BBFK(broadband frequency-wavenumber)的波向來源方位分析,其波前之傳遞方向與後方位角之夾角,由台灣西北往西南部有變小的程現,其原因可能為表面波由東至西經過台灣逆衝前緣,表面波由低速區(中央山脈)至高速區(西部平原)折射而產生,而傳遞路徑也受到台灣西半部前陸盆地的地體構造影響而延著其構造變化。
英文摘要 Surface waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake and the 2012 Mw 8.6 Sumatra earthquake were recorded by broadband seismic stations and 1-Hz GNSS stations in the Taiwan and Ryukyu region. All GNSS stations were processed by GIPSY 6.3 with Precise Point Positioning (PPP) method to estimate the absolute epoch-by-epoch positions. Both time series of GNSS and broadband seismic stations are highly consistent with correlation coefficients between 0.86 and 0.92. We combined surface wave data recorded by GNSS and broadband seismic stations to measure Love wave dispersion curves by the two-station technique. The average two-dimensional shear wave velocity model in the Okinawa Trough region is estimated and the Okinawa Trough is indicated by a low-velocity zone at depths above 30 km, which can be related to the presence of back-arc extension and the region of melt generation. In addition, Love wave later phases with periods of 15-25 s are observed in the western part of Taiwan. Analyzing the depth of western foreland flexure with later phase amplitude and using broadband frequency-wavenumber (BBFK) method to detect the source of later phase, we found that the later phase amplitudes evidently reflect the depth of foreland flexure and the propagation path of later phase is controlled by the along-strike geometry of western foreland structure.
論文目次 Abstract I
摘要 II
致謝 III
Contents IV
List of Figures VI

1. Introduction 1
1.1 Motivation 1
1.2 Background of the Ryukyu Trench-Arc system 4
1.3 Background of the South China Sea 11
2. Data 15
3. Methods 19
3.1 GIPSY/OASIS 6.3 19
3.2 Broadband Frequency-Wavenumber (BBFK) 19
3.3 Multiple Filter Technique (MFT) 20
3.4 Two-Station dispersion measurement 21
3.5 Shear wave velocity inversion 22
4. Results 23
4.1 The observation of the 2011 Mw 9.0 Tohoku earthquake 23
4.1.1 Comparison between GNSS and Broadband seismic observations 23
4.1.2 Displacement time series in transverse and radial component 26
4.1.3 The characteristics of surface wave in Taiwan 30
4.1.4 Group velocity dispersion curves measured by MFT 33
4.1.5 Dispersion curves of single station 35
4.1.6 Later phase processed by the Broadband Frequency-Wavenumber 37
4.2 The observation of the 2012 Mw 8.6 Sumatra earthquake 39
4.2.1 Comparison between GNSS and Broadband seismic observations 39
4.2.2 Displacement time series in transverse and radial component 42
4.2.3 The characteristics of surface wave in Taiwan 46
4.2.4 Group velocity dispersion curves measured by MFT 49
4.2.5 Dispersion curves of single station 51
4.2.6 Later phase processed by the Broadband Frequency-Wavenumber 53
4.3 Dispersion curves of later phase triggered by the 2011 Mw 9.0 Tohoku earthquake 55
4.4 Variations of velocity along the Ryukyu Trench–Arc system 57
4.5 1-D shear wave structure 60
4.6 2-D shear wave structure along the Okinawa Trough region 63
5. Discussion 65
5.1 Comparison of surface waves between the 2011 Mw 9.0 Tohoku earthquake and the 2012 Mw 8.6 Sumatra earthquake 65
5.2 The later phase in western part of Taiwan 69
5.3 The average velocity structure in the Okinawa Trough 78
6. Conclusions 80
7. References 82

參考文獻 Allen, R. M., and Ziv, A. (2011). Application of real‐time GPS to earthquake early warning. Geophysical Research Letters, 38, L16310, doi:10.1029/2011GL047947.
Bilich, A., Cassidy, J. F., and Larson, K. M. (2008). GPS seismology: Application to the 2002 Mw 7.9 Denali fault earthquake. Bulletin of the Seismological Society of America, 98(2), 593-606.
Boore, D. M., Larner, K. L., and Aki, K. (1971). Comparison of two independent methods for the solution of wave-scattering problems: response of a sedimentary basin to vertically incident SH waves. Journal of Geophysical Research, 76(2), 558-569.
Briais, A., Patriat, P., and Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299-6328.
Byrne, T., Chan, Y. C., Rau, R. J., Lu, C. Y., Lee, Y. H., and Wang, Y. J. (2011). The arc-continent collision in Taiwan, in Arc-Continent Collision, edited by D. Brown and P. D. Ryan, pp. 213–245, Springer, New York.
Chen, K. C., Wang, J. H., and Teng, T. L. (2008). Long-Period Ground Motion Observations along Two Linear Profiles from the 26 December 2006 Pingtung Offshore Earthquakes. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 653–669.
Ching, K. E., Rau, R. J., and Zeng, Y. (2007). Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements. Journal of Geophysical Research: Solid Earth, 112, B06422, doi:10.1029/2006JB004439.
Currie, C. A., and Hyndman, R. D. (2006). The thermal structure of subduction zone back arcs. Journal of Geophysical Research: Solid Earth, 111, B08404, doi: 10.1029/2005JB004024.
Davis, J. P., and Smalley, R. (2009). Love wave dispersion in central North America determined using absolute displacement seismograms from high‐rate GPS. Journal of Geophysical Research: Solid Earth, 114, B11303, doi:10.1029/2009JB006288.
Dziewonski, A. M., and Hales, A. L. (1972). Numerical analysis of dispersed seismic waves, in Methods in computational physics, volume 11, pp. 39-85, Academic, New York.
Dziewonski, A., Bloch, S., and Landisman, M. (1969). A technique for the analysis of transient seismic signals. Bulletin of the seismological Society of America, 59(1), 427-444.
Fournier, M., Fabbri, O., Angelier, J., and Cadet, J. P. (2001). Regional seismicity and on‐land deformation in the Ryukyu arc: Implications for the kinematics of opening of the Okinawa Trough. Journal of Geophysical Research: Solid Earth, 106(B7), 13751-13768, doi:10.1029/2001JB900010.
Furukawa, M. (1991). Formation age of the Ryukyu Arc–Okinawa Trough system. Journal of Geography (Chigaku Zasshi), 100, 552-564.
Goldstein, P., Dodge, D., Firpo, M., and Minner, L. (2003). 85.5 SAC2000: Signal processing and analysis tools for seismologists and engineers. International Geophysics, 81, 1613-1614, doi:10.1016/S0074-6142(03)80284-X.
Gutscher, M. A., Klingelhoefer, F., Theunissen, T., Spakman, W., Berthet, T., Wang, T. K., and Lee, C. S. (in press). Thermal modeling of the SW Ryukyu forearc (Taiwan): Implications for the seismogenic zone and the age of the subducting Philippine Sea Plate (Huatung Basin). Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2016.03.029.
Helffrich, G., Wookey, J., and Bastow, I. (2013). The Seismic Analysis Code: A Primer and User's Guide, Cambridge University Press, New York.
Herrmann, R. B., and Ammon, C. J. (2002). Computer Programs in Seismology, version 3.20: Surface Waves, Receiver Functions, and Crustal Structure, St. Louis University, Missouri.
Hirata, N., Kinoshita, H., Katao, H., Baba, H., Kaiho, Y., Koresawa, S., and Hayashi, K. (1991). Report on DELP 1988 cruises in the Okinawa Trough: Part 3. Crustal structure of the southern Okinawa Trough. Bulletin of the Earthquake Research Institute University of Tokyo, 66, 37–70.
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1), 1-16.
Huang, B. S., Wang, C. Y., Okaya, D., Lee, S. J., Lai, Y. C., Wu, F. T., Liang, W. T., and Huang, Y. C. (2013). Multiple diving waves and steep velocity gradients in the western Taiwan coastal plain: an investigation based on the TAIGER experiment. Bulletin of the Seismological Society of America, 103(2A), 925-935.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., and Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Huang, J., and Zhao, D. (2006). High‐resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111, B09305, doi:10.1029/2005JB004066.
Huang, Y. C., Yao, H., Wu, F. T., Liang, W. T., Huang, B. S., Lin, C. H., and Wen, K. L. (2014). Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses. Journal of Asian Earth Sciences, 81, 38-52.
Huang, Z., Su, W., Peng, Y., Zheng, Y., and Li, H. (2003). Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research: Solid Earth, 108(B2), 2073, doi:10.1029/2001JB00169.
Hung, H. K., and Rau, R. J. (2013). Surface waves of the 2011 Tohoku earthquake: Observations of Taiwan's dense high‐rate GPS network. Journal of Geophysical Research: Solid Earth, 118(1), 332-345.
Hwang, R. D., and Yu, G. K. (2005). Shear‐wave velocity structure of upper mantle under Taiwan from the array analysis of surface waves. Geophysical research letters, 32, L07310, doi:10.1029/2004GL021868.
Joyner, W. B. (2000). Strong motion from surface waves in deep sedimentary basins. Bulletin of the Seismological Society of America, 90(6B), S95-S112, doi:10.1785/0120000505.
Kennett, B. L. N., and Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429-465.
Kido, Y., Suyehiro, K., and Kinoshita, H. (2001). Rifting to spreading process along the northern continental margin of the South China Sea. Marine Geophysical Researches, 22(1), 1-15.
Kouba, J. (2003). Measuring seismic waves induced by large earthquakes with GPS. Studia Geophysica et Geodaetica, 47(4), 741-755.
Koyama, S., Seo, K., and Yamanaka, H. (1988). On the significant later phase of seismograms at Kumagaya, Japan. In Proc. 9th World Conf. Earthquake Eng. II, 385-590.
Kubo, A., and Fukuyama, E. (2003). Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth and Planetary Science Letters, 210(1), 305-316.
Lallemand, S., Font, Y., Bijwaard, H., and Kao, H. (2001). New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics, 335(3), 229-253.
Larson, K. M., Bodin, P., and Gomberg, J. (2003). Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science, 300(5624), 1421-1424.
Larson, K. M. (2009). GPS seismology. Journal of Geodesy, 83(3-4), 227-233.
Legendre, C. P., Chen, Q. F., and Zhao, L. (2014). Lithospheric structure beneath the East China Sea revealed by Rayleigh-wave phase velocities. Journal of Asian Earth Sciences, 96, 213-225.
Lichten, S. M., and Border, J. S. (1987). Strategies for high‐precision Global Positioning System orbit determination. Journal of Geophysical Research: Solid Earth, 92(B12), 12751-12762.
Lin, A. T., and Watts, A. B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9), 2185, doi:10.1029/2001JB000669.
Ludwig, W. J. (1970). The Manila Trench and West Luzon Trough—III. Seismic-refraction measurements. Deep Sea Research, 17, 553-571.
Marquaridt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3), 591-612.
Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory, Academic, San Diego, California.
Nakamura, M., Yoshida, Y., Zhao, D., Katao, H., and Nishimura, S. (2003). Three-dimensional P-and S-wave velocity structures beneath the Ryukyu arc. Tectonophysics, 369(3), 121-143.
Nawab, S. H., Dowla, F. U., and Lacoss, R. T. (1985). Direction determination of wideband signals. Acoustics, Speech and Signal Processing, IEEE Transactions on, 33(5), 1114-1122.
Nishimura, S., Hashimoto, M., and Ando, M. (2004). A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc. Physics of the Earth and Planetary Interiors, 142(3), 185-203.
Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R., Takasu, T., Fujimoto, H., Iinuma, T., Tachibana, K., Demach, T., Sato, T., Ohzono, M., and Umino, N. (2012). Quasi real‐time fault model estimation for near‐field tsunami forecasting based on RTK‐GPS analysis: Application to the 2011 Tohoku‐Oki earthquake (Mw 9.0). Journal of Geophysical Research: Solid Earth, 117, B02311, doi:10.1029/2011JB008750.
Pin, Y., Di, Z., and Zhaoshu, L. (2001). A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1), 1-21.
Polet, J., and Kanamori, H. (1997). Upper-mantle shear velocities beneath southern California determined from long-period surface waves. Bulletin of the Seismological Society of America, 87(1), 200-209.
Qiu, X., Ye, S., Wu, S., Shi, X., Zhou, D., Xia, K., and Flueh, E. R. (2001). Crustal structure across the Xisha trough, northwestern South China Sea. Tectonophysics, 341(1), 179-193.
Segall, P., and Davis, J. L. (1997). GPS applications for geodynamics and earthquake studies. Annual Review of Earth and Planetary Sciences, 25(1), 301-336.
Shao, G., Li, X., Ji, C., and Maeda, T. (2011). Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth, planets and space, 63(7), 559-564.
Shi, C., Lou, Y., Zhang, H., Zhao, Q., Geng, J., Wang, R., and Liu, J. (2010). Seismic deformation of the M w 8.0 Wenchuan earthquake from high-rate GPS observations. Advances in Space Research, 46(2), 228-235.
Sibuet, J. C., Deffontaines, B., Hsu, S. K., Thareau, N., Le Formal, J. P., Liu, C. S., and Party, A. C. T. (1998). Okinawa trough backarc basin: Early tectonic and magmatic evolution. Journal of Geophysical Research, 103(B12), 30245-30267.
Sibuet, J. C., Hsu, S. K., Shyu, C. T., and Liu, C. S. (1995). Structural and kinematic evolutions of the Okinawa Trough backarc basin, in Backarc Basins: Tectonics and Magmatism, edited by B. Taylor, pp. 343-378, Plenum, New York.
Sibuet, J. C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.-P., Hilde, T.W.C., Kimura, M., Chiao, L.-Y., Marsset, B., Muller, C., and Stephan, J.F. (1987). Back arc extension in the Okinawa Trough. Journal of Geophysical Research, 92(B13), 14041–14063.
Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., and Chen, Y. G. (2007). Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research: Solid Earth, 112, B11405, doi:10.1029/2006JB004824.
Stern, R. J. (2002). Subduction zones. Reviews of geophysics, 40(4), 1012, doi:10.1029/2001RG000108.
Taylor, B., and Hayes, D. E. (1983). Origin and history of the South China Sea basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, 23-56.
Toshinawa, T., and Ohmachi, T. (1992). Love-wave propagation in a three-dimensional sedimentary basin. Bulletin of the Seismological Society of America, 82(4), 1661-1677.
Wang, G. Q., Tang, G. Q., Boore, D. M., Burbach, G. V. N., Jackson, C. R., Zhou, X. Y., and Lin, Q. L. (2006). Surface waves in the western Taiwan coastal plain from an aftershock of the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 96(3), 821-845.
Wang, Z., Huang, R., Huang, J., and He, Z. (2008). P-wave velocity and gradient images beneath the Okinawa Trough. Tectonophysics, 455(1), 1-13.
Wei, W., Zhao, D., Xu, J., Wei, F., and Liu, G. (2015). P and S wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism. Journal of Geophysical Research: Solid Earth, 120(3), 1642-1666.
Wu, H. H., Tsai, Y. B., Lee, T. Y., Lo, C. H., Hsieh, C. H., and Van Toan, D. (2004). 3-D shear wave velocity structure of the crust and upper mantle in South China Sea and its surrounding regions by surface wave dispersion analysis. Marine Geophysical Researches, 25, 5-27.
Yamato, P., Mouthereau, F., and Burov, E. (2009). Taiwan mountain building: insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere. Geophysical Journal International, 176(1), 307-326.
Zhang, H., Chen, J., and Ge, Z. (2012). Multi‐fault rupture and successive triggering during the 2012 Mw 8.6 Sumatra offshore earthquake. Geophysical Research Letters, 39, L22305, doi:10.1029/2012GL053805.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw