系統識別號 U0026-1708201521411900
論文名稱(中文) 適用於皮米衛星任務之微小化太陽極紫外線光度計
論文名稱(英文) Miniaturized Solar Extreme Ultraviolet Probe for CubeSat Missions
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 103
學期 2
出版年 104
研究生(中文) 曹祖維
研究生(英文) Tsu-Wei Tsau
電子信箱 heathcliff91@gmail.com
學號 LA6021103
學位類別 碩士
語文別 中文
論文頁數 56頁
口試委員 指導教授-陳炳志
中文關鍵字 太陽極紫外線  增溫層  鳳凰立方衛星  光電流  電漿電流 
英文關鍵字 solar extreme ultraviolet  thermosphere  PHOENIX CubeSat  photoelectron current  plasma current 
中文摘要 成功大學團隊研製2-U立方衛星PHOENIX參與歐盟之QB50任務。PHOENIX在搭載滿足任務需求之酬載: 離子與中性粒子質譜儀、熱敏電阻外,尚有餘裕可容納其它酬載。基於極紫外線對於反應太陽活動和增溫層環境顯著的影響,本論文逐發展一科學酬載: 太陽極紫外線感測器。紫外線輻射屬於波長低於400 nm的波段,在太陽輻射中的變動較可見光大得多,並與太陽活動高度相關。地球大氣層會完全吸收該波段,其中少量極紫外線通量的變化就會造成大氣變動。雖然極紫外線只占太陽輻射總量的1%,這些輻射扮演了加熱上層大氣、光分解與游離現象的主要角色。過去對紫外線輻射量測的儀器大多體積龐大且需要高壓電,我們欲發展微小化且低耗能的太陽極紫外線感測器,使其容易滿足中小型載具的任務需求,爭取更多執行任務的機會。本感測器的原理是光電效應,藉由陽光照射在電極上產生之光電流來量測極紫外線。由於PHOENIX將於電漿層內執行任務,為了驅散自由電子而在電極上所施加的負向偏壓,會在電漿環境中吸引帶正電的離子,形成電漿電流。所以我們把功函數不同的兩種金屬電極做為一組,安裝兩組在衛星的不同方位上做量測,將能經過計算來消去電漿電流的影響。我們已對太陽極紫外線感測器在有或無電漿的環境下、光源與電極不同的距離與角度下,進行紫外線照射的實驗。在實驗中,本感測器能夠精確量測到微小變化的電漿電流,會因為電極功函數的差異而量測到不同的光電流。對於紫外線光源不同的距離與角度也有相應的回饋。因為具有低重量、低耗電與小體積的特點,本項設計可以滿足皮米衛星的實驗需求,也能使用於探空火箭與氣球任務上。
英文摘要 The PHOENIX satellite is a 2-U CubeSat that has been developed at National Cheng Kung University (NCKU) as a unit of the QB50 mission, which is an international space collaboration coordinated by the von Karman Institute. One of the main objectives of the QB50 mission is to carry out the in-situ measurements at the lower thermosphere which is rarely explored in traditional satellite missions. The PHOENIX CubeSat is to fulfill the above goal by accommodating following payloads: an Ion and Neutral Mass Spectrometer, Thermistors, and a Solar Extreme Ultraviolet Probe (SEUV Probe) which was developed in this study. The solar extreme ultraviolet (EUV) radiation is the main energy source in the thermosphere. Accurate knowledge of this radiation is of prime importance for space weather, satellite drag, telecommunication and positioning. The photoelectric current from 4 planar copper-based electrodes plated with gold and tin are produced by energetic EUV photons. The electrodes with different metal plating can be used to eliminate the current contributed by the environmental space plasma. Two sets of electrodes (a gold one and a tin one each set) are located on different orientations of the PHOENIX CubeSat, thus the photoelectric current caused by the different normal components on the electrode surface can help to determine the inclination angle of the Sun. Therefore the SEUV Probe can also act as an auxiliary device of the sun sensor and Attitude Determination and Control System. The functional and scientific performance tests of the SEUV probe have been done in the plasma chamber and reported in this thesis. With the feature of low power consumption, compact and lightweight, SEUV probe can satisfy the requirements of not only the QB50 but also further CubeSat missions, and can be utilized in sounding balloon and rocket experiments.
論文目次 摘要 I
Extended Abstract II
誌謝 VI
目錄 VII
圖目錄 VIII
表目錄 XII
第1章 簡介 1
1.1 紫外線與太陽活動 1
1.2 EUV的重要性與對大氣層的影響 4
1.3 太陽紫外線量測的衛星任務 8
1.4 QB50任務與 PHOENIX立方衛星 10
1.5 論文架構 14
第2章 太陽極紫外線光度計之設計 15
2.1 紫外輻射量測發展與設計緣起 15
2.2 太陽極紫外線光度計之設計 17
第3章 實驗測試與分析 32
3.1 實驗環境設置 32
3.2 實驗步驟、種類與配置 35
3.3 光源反應實驗 38
3.4 電極於不同距離、角度之實驗 41
3.5 實驗總結 49
第4章 結論與未來展望 50
4.1 結論 50
4.2 未來展望 51
參考文獻 54
參考文獻 [1]Agostini, P. and G. Petite (1988), Photoelectric effect under strong irradiation, Contemporary Physics, 29:1, 57-77, DOI: 10.1080/00107518808213751.

[2]Brace, L., W. Hoegy and R. Theis (1988), Solar EUV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir probe, J. Geophys. Res., 93(A7), 7282–7296, doi:10.1029/JA093iA07p07282.

[3]Brasseur, G. (1993), The response of the middle atmosphere to long-term and short-term solar variability: A two-dimensional model, J. Geophys. Res., 98, 20,079–23,090.

[4]Chen, L. W., A. Heimann, E. Huang, K. Huang, T. Y. Lin, J. Tsai, T. W. Tsau, J. Vannitsen, Vina and J. Wu (2015), PHOENIX Design Overview, private communication, National Cheng Kung University.

[5]Emmert, J. T., J. M. Picone, and R. R. Meier (2008), Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects, Geophys. Res. Lett., 35, L05101, doi:10.1029.2007GL032809.

[6]Fang, H. K. (2015), Ion measurements of Ionosphere Plasma in Space Plasma Chamber, PhD dissertation, Institute of Physics, National Cheng Kung University.

[7]Fröhlich, C. and J. Lean (2004), Solar Radiative Output and its Variability: Evidence and Mechanisms, The Astron. and Astrophys. Rev., 12, pp. 273--320, 2004, doi: 10.1007/s00159-004-0024-1.

[8]Heath, D. F. and M. P. Thekaekara (1977), The solar spectrum between 1200 and 3000Å , in The Solar Output and Its Variation, edited by O. R. White, pp. 193-212, Colorado Associated University Press, Boulder.

[9]Hedin, A. E. (1984), Correlations between thermospheric density and temperature, solar EUV flux and 10.7-cm flux variations, J. Geophys. Res.,89, 9828 – 9834.

[10]Henneken, H., F. Scholze, M. Krumrey, and G. Ulm (2000), Quantum efficiencies of gold and copper photocathodes in the VUV and X-ray range, Metrologia, 37, 485, doi:10.1088/0026-1394/37/5/31.

[11]Hinteregger, H. E. (1981), Representations of solar EUV fluxes for aeronomical applications, Adv. Space Res., 1(12), 39-52.

[12]Hinteregger, H. E., K. Fukui, and B. G. Gilson (1981), Observational, reference and model data on solar EUV, from measurements on AE‐E, Geophys. Res. Lett., 8, 1147–1150, doi:10.1029/GL008i011p01147.

[13]Hoegy, W. R. and K. K. Mahajan (1992), Solar EUV index for aeronomical studies at Earth from Langmuir probe photoelectron measurements on the Pioneer Venus Orbiter, J. Geophys. Res., 97(A7), 10525–10537, doi:10.1029/92JA00384.

[14]Huba, J. D., G. Joyce, J. A. Fedder (2000), Sami2 is another model of the ionosphere (SAMI2): A new low‐latitude ionosphere model, J. Geophys. Res., 105, 23,035–23,054, doi:10.1029/2000JA000035.

[15]King-Hele, D.G. (1987), Satellite Orbits in an Atmosphere: Theory and application, Springer.

[16]Kockarts, G. (1981), Effects of solar variations on the upper atmosphere, Sol. Phys., 74, 295-320.

[17]Lean, J. (1987), Solar ultraviolet irradiance variations: A review, J. Geophys. Res., 92(D1), 839–868, doi:10.1029/JD092iD01p00839.

[18]Lean, J. (1991), Variations in the Sun's radiative output, Rev. Geophys., 29,505–535.

[19]Lean, J. (1997), THE SUN'S VARIABLE RADIATION AND ITS RELEVANCE FOR EARTH1, Annual Review of Astronomy and Astrophysics, 35, 1, 33.

[20]Lean, J., T. N. Woods, F. G. Eparvier, R. R. Meier, D. J. Strickland, J. T. Correira, and J. S. Evans. (2011), Solar extreme ultraviolet irradiance: Present, past, and future, J. Geophys. Res., 116, A01102.

[21]Lee, C. H. (2012) Development of Langmuir probe for measuring electron energy distribution function, Master thesis, Institute of Space and Plasma Science, National Cheng Kung University.

[22]Leroy, J. L. (2000), Polarization of light and astronomical observation, vol. 4 of Advances in astronomy and astrophysics, Gordon & Breach Science.

[23]Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P. O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère (2008), Review on the solar spectral variability in the EUV for space weather purposes, Ann. Geophys., 26, 269-279, doi:10.5194/angeo-26-269-2008. 

[24]Michaelson, H. B. (1977), J. Appl. Phys., 48(11), 4729.

[25]National Academy of Sciences (1988), Long-Term Solar-Terrestrial Observations, National Academy Press.

[26]Nicolson, I. (1982), The Sun, p. 28, Rand McNally.

[27]Reeves, E. M. and W. H. Parkinson (1970), Calibration Changes in EUV Solar Satellite Instruments, Appl. Opt. 9, 1201-1208.

[28]Rottman, G. J. (1988), Observations of solar UV and EUV variability, Advances in Space Research, 8, 7, 53.

[29]Schmidtke, G. (1981), Solar irradiance below 120 nm and its variations, Sol. Phys., 74, 251-263.

[30]Solomon, S. C. and L. Qian (2005), Solar extreme‐ultraviolet irradiance for general circulation models, J. Geophys. Res., 110, A10306, doi:10.1029/2005JA011160.

[31]Taguchi M., H. Fukunishi, H. Watanabe, S. Okano, Y. Takahashi, and T. D. Kawahara (2000), Ultraviolet imaging spectrometer (UVS) experiment on board the NOZOMI spacecraft: instrumentation and initial results, Earth Planets Space, 52, 49 - 60.

[32]Timothy, J. G. (1977), The solar spectrum between 300 and 1200 Å in The Solar Output and its Variation, edited by O. R. White, pp. 237-259, Colorado Associated University Press, Boulder.

[33]Warren, H. P., J. T. Mariska, and J. Lean (2001), A new model of solar EUV irradiance variability: 1.Model formulation, J.Geophys.Res.,106,15,74515,757,doi:10.1029/2000JA000282.

[34]White, O. R. (Ed.) (1977), The Solar Output and its Variation, Colorado Associated University Press, Boulder.

[35]Woods, T.N. and G. J. Rottman (2002), Solar ultraviolet variability over time periods of aeronomic interest, American Geophysical Union, Washington D.C. 130: 5-3. doi: 10.1029/130GM14.

[36]World Meteorological Organization, Global Ozone Research and Monitoring Project, Report of the International Ozone Trends Panel (1988), Rep. 18, Geneva.

[37]Wuebbles, D. J., D. E. Kinnison, K. E. Grant, and J. Lean (1991), The effect of solar flux variations and trace gas emissions on recent trends in stratospheric ozone and temperature, J. Geomagnetism and Geoelectricity, 43,709-718.
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-21起公開。

  • 如您有疑問,請聯絡圖書館