進階搜尋


下載電子全文  
系統識別號 U0026-1708201520032900
論文名稱(中文) 以靈敏度分析修正發電機調度排程以確保電網安全
論文名稱(英文) Sensitivity Analysis Applied to Unit Dispatch Correction for Grid Security
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 曾祺軒
研究生(英文) Chi-Shiuan Tzeng
學號 N26021262
學位類別 碩士
語文別 中文
論文頁數 92頁
口試委員 口試委員-盧展南
口試委員-王瑋民
口試委員-吳進忠
指導教授-張簡樂仁
中文關鍵字 安全性修正  靈敏度分析  粒子群演算法 
英文關鍵字 Security analysis  Sensitivity analysis  Particle Swarm Optimization 
學科別分類
中文摘要 電力系統運轉之目標在於維持供電的穩定,隨著未來台灣電業法的更新,台灣電力公司面臨電業自由化及電力市場開放等議題。如何維持可靠的電源供給及系統的安全操作下引進市場機制,是未來主要研究的課題。因此,將規劃的機組發電排程結合電網安全性分析,在預設的電網事故下藉由排程的修正讓電網依然能保持安全狀態,使得電網能抵禦可預期事故的衝擊,以此來提高系統供電的可靠度。
本論文利用Python語言配合PSS/E內部應用指令建構出靈敏度分析流程,利用微調機組的發電量去計算指定線路功率的變化量,藉此分析出機組對應於指定線路的靈敏度,當偶發事故使線路過載時,用來做機組發電排程上的修正。在修正計算上利用Python語言撰寫粒子群演算法,在挑選出可解決的案例進行修正量的最佳化運算。
英文摘要 Providing stable power is the goal of the power system operation. With the new revision of Taiwan’s electricity act, Taiwan Power Company (TPC) is now facing power industry deregulation. Under open access of the power market environment, maintaining reliability and security of grid operation are the primary concerns. Security-constrained correction of unit scheduling is the reliability issue for grid to maintain at secure state after the contingency.
This thesis presents a method by coping Python code with PSS/E software to develop the sensitivity analysis between units and transmission lines. Sensitivity of specific power line to some specific unit can be calculated by the power flow deviation of line with respect to the power output deviation of the specific unit. The line sensitivity can be used in the correction process of unit dispatch scheduling when the line is overloading. Particle swarm optimization (PSO) is implemented by Python code to perform optimal unit dispatch corrections in some selected contingency scenarios.
論文目次 摘要 II
Abstract III
誌謝 XI
目錄 XII
表目錄 XIV
圖目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 本文貢獻 2
1.4 論文架構 3
第二章 競價機制簡介 5
2.1 前言 5
2.2 競價機制簡介 5
2.2.1 電力市場的競價機制[5] 7
2.2.2 輔助服務市場[2][5] 8
2.2.3 市場力量 9
2.2.4 輸電系統壅塞管理[5] 10
2.3 國外電力市場與相關競價作業流程[2][7] 10
2.4 目前國內市場運作機制[2] 15
2.5 本章結論 16
第三章 電力系統安全評估 17
3.1 前言 17
3.2 電力系統安全性分析 17
3.2.1 電力監控系統與狀態估計 18
3.2.2 事故分析[12] 19
3.2.2.1 直流電力潮流分析 23
3.2.2.2 交流電力潮流方法[12] 27
3.2.3 具安全限制最佳電力潮流[12] 28
3.3 矯正控制(CORRECTIVE CONTROL) 30
3.3.1 暫態具穩定性限制之最佳電力潮流 30
3.4 緊急控制 37
3.5 本章結論 38
第四章 模擬架構的實現 39
4.1 前言 39
4.2 模擬系統架構 39
4.3 電力系統之靈敏度[20] 43
4.4 粒子群演算法之簡介 47
4.5 事故分析種類選擇[24] 50
4.6 競價資料處理 53
4.7 本章結論 56
第五章 案例分析結果 57
5.1 前言 57
5.2 案例模擬情況說明 57
5.2.1 最佳化數學模型 58
5.2.2 最佳化函數總結 61
5.3 案例模擬結果討論 62
5.3.1 CaseⅠ案例模擬結果 64
5.3.2 CaseⅡ案例模擬結果 73
5.3.3 CaseⅢ案例模擬結果 82
5.4 本章結論 85
第六章 結論與未來研究 86
6.1 結論 86
6.2 未來研究方向 87
參考文獻 89
附錄一 直流模型事故檢查報表 92
參考文獻 [1] S.-J. CHEN, “Bid-Based Power Dispatch and GenCo’s Bidding Strategy in a Deregulated Environment”, National Sun Yat-sen University Master Thesis, 2001
[2] 台灣電力公司, “試行日前市場機制「火力機組競價估算輔助服務成本」執行報告”, 2014年11月
[3] R. Moreno, D. Pudjianto, and G. Strbac, “Transmission Network Investment With Probabilistic Security and Corrective Control,” IEEE Transactions on Power Systems, VOL. 28, NO. 4, November 2013.
[4] A. P. Meliopoulos and A. G. Bakirtzis, “Corrective control computations for large power systems,” IEEE Trans. Power Apparat. Syst., vol. PAS- 102, no. 11, pp. 3598–3604, Nov. 1983.
[5] 吳元康, “電力市場設計成功與否的關鍵因素分析”, 台電工程月刊, 第796期, 2014
[6] A. Grey, and A. Sekar, “Unified solution of security-constrained unit commitment problem using a linear programming methodology”, IEEE Trans. Generation, Transmission & Distribution, IET, Vol.3, pp. 856-867 November 2008
[7] J. Yu and J. Mickey, "Market Solution in ERCOT Balancing Energy Market," Power Engineering Sociery Summer Meering, 2002 IEEE , Vol. 3,Zl-25, pp. 1348 -1353, July 2002.
[8] ERCOT,” Day-Ahead Operations”
[9] H. Hui, C.-N. Yu and S. Moorty, “Reliability Unit Commitment in the New ERCOT Nodal Electricity Market,” Proceedings of IEEE PES General Meeting, Calgary, Canada, July 2009.
[10] L. Yonggang, J. Jiang, “Experience with Operating the AncillaryService Markets in ERCOT”, IEEE Power Engineering Society General Meeting, 2007, pp. 1-6, 24-28 June 2007
[11] S. P. Karthikeyan, I. J. Raglend, D.P. Kothari, “A review on market power in deregulated electricity market”, Int J Electr Power Energy Syst, , pp. 139–147, 48 (June) (2013).
[12] A. J. Wood and B. F. Wollenberg, “Power Generation, Operation, and Control”, Wiley Interscience, second edition, 1996.
[13] Javier Antonio Lopez Posadas, “Dynamic Security Analysis and Controls Based on System Real-Time Model”, National Sun Yat-sen University Master Thesis, 2014
[14] Y. Xu, Z.-Y. Dong, Z. Xu, R.Zhang and K.-Wong, “Power System Transient Stability-Constrained Optimal Power Flow: A Comprehensive Review” , IEEE Power and Energy Society General Meeting, San Diego, 2012
[15] C. Liu, K. Sun, Z. H. Rather, Z. Chen, C. L. Bak, P. Thøgersen, and P. Lund, “A Systematic Approach for Dynamic Security Assessment and the Corresponding Preventive Control Scheme Based on Decision Trees”, IEEE Transactions Power Systems, vol.20, no.4, pp.2381-2388, 2005.
[16] Y. Kun, C. Xingying, C. Yijia, “Dynamic security analysis of the urban power grid in islanding”, International conference on advanced power system automation and protection (APAP), Beijing, 2011.
[17] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem, and V. Vittal, “Definition and Classification of Power System Stability”, IEEE Transactions on Power Systems, VOL. 19, NO. 2, MAY 2004.
[18] North American Electric Reliability Council, “Special Protection System (SPS) and Remedial Action Schemes (RAS): Assessment of Definition, Regional Practices and Application of Related Standards”, 2013.
[19] U. Kerin, G. Bizjak, E. Lerch, O. Ruhle and R. Krebs, “Dynamic Security Assessment using Time-Domain Simulator”, IEEE/PES Power System Conference and Exposition, Seattle, 2009.
[20] Siemens Industry, Inc., “PSS®E 33.5 Program Operation Manual”, October 2013
[21] Y. Valle, G. K. Venayagamoorthy, S. Mohagheghi, J-C Hernandez, and R. G. Harley,” Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems”, IEEE Transactions on Evolutionary Computation, VOL. 12, NO. 2, APRIL 2008
[22] C. Li, S. Yang, and T. T. Nguyen, "A self-learning particle swarm optimizer for global optimization problems", IEEE. T. Syst. Man. Cy. B, vol. 42, pp. 627-646, 2012.
[23] T. Niknam and F. Golestaneh, “Enhanced Adaptive Particle Swarm Optimization Approach for Dynamic Economic Dispatch of Units Considering Valve-Point Effects and Ramp Rates”, IET Generation, Transmission and Distribution, vol. 6, iss. 5, pp. 424 – 435, 2002.
[24] 台灣電力公司,“台灣電力股份有限公司輸電系統規劃準則”
[25] J. M. Wojciechowski, “A general approach to sensitivity analysis in power systems”, IEEE International Symposium on Circuits and Systems, vo1.1, pp. 417-420, 1988.
[26] M. J. Laufenberg and M. A. Pai, “Sensitivity theory in power systems: Application in dynamic security analysis,” in Proc. IEEE Int. Conf. Control Applications, Dearborn, MI, Sep. 15–18, pp. 738–743, 1996.
[27] M. Parvania, M. Fotuhi-Firuzabad, and M. Shahidehpour, “ISO’s Optimal Strategies for Scheduling the Hourly Demand Response in Day-Ahead Markets,” IEEE Transactions On Power Systems, VOL. 29, NO. 6, NOVEMBER 2014.
[28] C. Liu, M. Shahidehpour, Z. Li, and M. Fotuhi-Firuzabad, “Component & mode models for short-term scheduling of combined-cycle units,” IEEE Trans. Power Syst., vol. 24, pp. 976–990, May 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw