進階搜尋


 
系統識別號 U0026-1708201514223200
論文名稱(中文) PHOENIX立方衛星姿態判定與控制次系統: 設計, 實現及測試
論文名稱(英文) Attitude Determination and Control Subsystem for PHOENIX CubeSat: Design, Implementation, and Testing
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 陳美好
研究生(英文) Vina
學號 N26027048
學位類別 碩士
語文別 英文
論文頁數 121頁
口試委員 指導教授-莊智清
口試委員-苗君易
口試委員-壽鶴年
口試委員-許佳興
口試委員-鄭泗滄
中文關鍵字 立方衛星  姿態判定  姿態控制  卡爾曼濾波器  磁力控制  飛輪控制 
英文關鍵字 CubeSat  attitude determination  attitude control  Kalman filter  magnetic control  wheel control 
學科別分類
中文摘要 PHOENIX衛星是一顆由國立成功大學研製的立方體衛星,且此為台灣唯一一顆參與歐盟QB50計劃的衛星。QB50計劃目標為針對低熱氣層進行量測。離子與中性粒子質譜儀與太陽紫外光感測器為PHOENIX衛星兩個主要的酬載。本論文說明PHOENIX立方衛星上姿態控制次系統的設計、實現與測試過程。其中包括不同的估測方法與控制器的設計也會於論文中描述。為了符合計劃的需求,估測方法與控制器設計之間的優良組合會經由MATLAB/Simulink的模擬結果來制定。設計後的系統將會實現於姿態控制飛行軟體中,此飛行軟體為PHOENIX軟體架構的一部分。當中,姿態控制飛行軟體又可分為兩部分,一部分為使用於姿態控制板上的姿態控制軟體;另一部分將姿態控制執行項目實現於PHOENIX 衛星主控電腦上。由於前者無法進行修改,本論文的研究方向主要著重於後者。最後,本論文將姿態控制模組中的硬體組件,特別是針對感測器與驅動器進行測試,以確認衛星在軌道上可以正常地執行任務。飛行軟體部分也將進行功能性測試以滿足衛星任務需求。本研究所發展之姿態判定與控制飛行軟體將應用於預定2016/2017年發射之PHOENIX衛星。
英文摘要 PHOENIX is a CubeSat developed by National Cheng Kung University, Taiwan, which is the only satellite from Taiwan participating in the European QB50 project. The QB50 project aims to perform in-situ measurements in the lower thermosphere. Two main payloads carried in this satellite are Ion and Neutral Mass Spectrometer (INMS) and Solar EUV Sensors.

This master thesis describes the design, implementation, and testing of Attitude Determination and Control Subsystem (ADCS) for PHOENIX CubeSat. Various estimation methods and controller designs are presented in this thesis. The proper combination of estimators and controllers are chosen based on the simulation results using MATLAB/Simulink to meet the project needs and requirements.

After finishing the design, the ADCS algorithm is implemented into ADCS flight software which is a part of the overall PHOENIX flight software. ADCS flight software is divided into two parts, which are the ADCS flight software utilized in the ADCS board and ADCS task implemented in PHOENIX On-Board Data Handling (OBDH) board. The second one will be the main focus in this thesis since it is not possible to modify the ADCS flight software in the ADCS board.

Finally, the hardware components of ADCS module, especially the sensors and actuators are checked and tested to ensure their health and satisfactory performance in-orbit. The ADCS flight software is also tested to confirm that all the functions written there can work properly for the whole satellite mission. All of these efforts are done in order to prepare PHOENIX for launch, which is scheduled in 2016/2017 together with other QB50 satellites.
論文目次 摘要 I
Abstract II
Acknowledgements IV
Contents V
List of Tables VIII
List of Figures IX
List of Abbreviations XII
Chapter 1 Introduction 1
1.1 Background and Objectives 1
1.2 Literature Study 4
1.3 Thesis Overview 5
Chapter 2 PHOENIX ADCS 7
2.1 QB50 Mission 7
2.2 PHOENIX CubeSat 10
2.3 ADCS Module and Design Requirements 14
2.3.1 ADCS Design Requirements and Recommendations 14
2.3.2 ADCS Body Coordinate Definition 15
2.3.3 ADCS Hardware Module 16
Chapter 3 Attitude Determination and Control 23
3.1 Attitude Determination 24
3.1.1 Y-MEMS Rate Sensing 24
3.1.2 Magnetometer Rate Filter 25
3.1.3 Magnetometer Rate Filter with Pitch Angle Estimator 28
3.1.4 Extended Kalman Filter 29
EKF Theoretical Derivation 29
EKF Implementation 32
3.1.5 Magnetometer and Sun TRIAD Algorithm 36
3.2 Attitude Control 38
3.2.1 Detumbling Control 38
3.2.2 Y-Momentum Stabilization Control 39
Chapter 4 Simulation Results 42
4.1 Simulation Parameters and Environment 42
4.2 Disturbance Torques Analysis 44
4.3 Attitude Determination 52
4.3.1 Y-MEMS Rate Sensing 53
4.3.2 Magnetometer Rate Filter 54
4.3.3 Magnetometer Rate Filter with Pitch Angle Estimator 56
4.3.4 Extended Kalman Filter 59
4.3.5 Magnetometer and Sun TRIAD Algorithm 64
4.3.6 Summary of Attitude Determination Simulations 67
4.4 Attitude Control 68
4.4.1 Detumbling 69
4.4.2 Y-Momentum Stabilization 73
Chapter 5 Software Implementation 80
5.1 ADCS Flight Software Architecture 80
5.2 Tasks Descriptions 81
5.2.1 ADCS Task 81
5.2.2 Telecom Task 82
5.2.3 Housekeeping Task 83
5.2.4 Payload Operation Task (INMS) 83
Chapter 6 ADCS Testing 84
6.1 Hardware Component Testing 84
6.1.1 Sensors 84
6.1.2 Actuators 86
6.2 Flight Software Testing 87
Chapter 7 Conclusion and Future Work 88
7.1 Conclusion 88
7.2 Recommendation for Future Work 89
Appendix A Mathematical Background 90
A.1 Mathematical Definitions of the Attitude 90
A.2 Attitude Representations 94
A.3 Equation of Motions 98
A.4 Disturbance Torques 101
A.5 Orbital Dynamics 103
A.6 Space Environment Model 108
Appendix B Simulink Block Diagram 117
References 119
參考文獻 [1] H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka, and R. Twiggs, “CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation,” in 14th AIAA/USU Conference on Small Satellites, Logan, Utah, 2000.
[2] R. Munakata, Cubesat Design Specification, rev. 12. The CubeSat Program, California Ploytechnic State University, 2009.
[3] (2015). QB50, an FP7 Project. Available: https://www.qb50.eu/
[4] V. Lappas, “QB50 ADCS + GPS,” presented at 3rd QB50 Workshop, Brussels, Belgium, 2012.
[5] Z. de Groot, J. Elstak, E. Bertels, and J. Rotteveel, “The QB50 Precursor Flight: Status, Preliminary Results and Lessons Learned,” in 6th European CubeSat Symposium, Switzerland, 2014.
[6] W. T. Thomson, “Spin Stabilization of Attitude Against Gravity Torque,” Journal of Astronautical Science, vol. 9, pp. 31-33, 1962.
[7] M. K. Quadrino, Testing the Attitude Determination and Control of a CubeSat with Hardware-in-the-Loop, M.S. thesis, Massachusetts Institute of Technology, 2014.
[8] S. A. Rawashdeh, Passive Attitude Stabilization for Small Satellites, M.S. thesis, University of Kentucky, 2010.
[9] M. L. Psiaki, “Nanosatellite Attitude Stabilization using Passive Aerodynamics and Active Magnetic Torquing,” Journal of Guidance, Control, and Dynamics, vol. 27, pp. 347-355, 2004.
[10] S. R. Starin and J. Eterno. “Attitude Determination and Control Systems”. Available: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110007876.pdf [July 1, 2015]
[11] F. S. J. Thoemel, T. Scholz, D. Masutti, P. Testani, C. Asma, R. Reinhard, and J. Muylaert, “Status of the QB50 CubeSat Constellation Mission,” in 65th International Astronautical Congress, Toronto, Canada, 2014.
[12] J. Rotteveel, “Launch Results from the QB50 Pre-cursor Launch Campaign Flight Qualification of the QB50 Launch System,” presented at CubeSat Workshop, Logan, Utah, 2014.
[13] A. Denis, QB50 System Requirements and Recommendations, v7.0, 2015.
[14] M. Chen, A. Heimann, E. Huang, T. Y. Lin, Vina, J. Tsai, J. Vannitsen, K. Huang, and J. Wu, PHOENIX Design Overview, 2014.
[15] S. H. Wu and J. C. Juang, “Pre-Mission Analysis and Architecture Design of Electrical Power Subsystem for 2U CubeSat,” in 10th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany, 2015.
[16] R. A. Chaudery, QB50 INMS Science Unit Interface Control Document, v10.0, 2014.
[17] L. Visagie, ADCS Interface Control Document, v3.0. Surrey Space Centre, United Kingdom, 2014.
[18] L. Visagie, QB50 ADCS Reference Manual, v1.0. Surrey Space Centre, United Kingdom, 2014.
[19] W. H. Steyn and M. A. Kearney, “An Attitude Control System for ZA-AeroSat Subject to Significant Aerodynamic Disturbances,” in World Congress, 2014, pp. 7929-7934.
[20] A. Scholz, Implementation of Advanced Attitude Determination and Control Techniques into a Nanosatellite, M.S. thesis, National Cheng Kung University, Taiwan, 2008.
[21] P. J. Botma, The Design and Development of an ADCS OBC for a CubeSat, M.S. thesis, Stellenbosch University, South Africa, 2011.
[22] T. Y. Lin, Design and Verification of the Control Procedure of Attitude Determination and Control Subsystem for Nanosatellite, M.S. thesis, National Cheng Kung University, Taiwan, 2014.
[23] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control vol. 33: Springer, 2014.
[24] W. H. Steyn and V. Lappas, “Cubesat Solar Sail 3-axis Stabilization using Panel Translation and Magnetic Torquing,” Aerospace Science and Technology, vol. 15, pp. 476-485, 2011.
[25] W. H. Steyn, “An attitude control system for SumbandilaSat an Earth observation satellite,” in The 4S (Small Satellite Systems and Services) Symposium. Rhodes Greece: ESA Proceedings SP-660, 2008.
[26] W. H. Steyn, Y. Hashida, and V. Lappas, “An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite,” in 14th AIAA/USU Conference on Small Satellites, Logan, Utah, 2000.
[27] W. Steyn and Y. Hashida, “An Attitude Control System for a Low-Cost Earth Observation Satellite with Orbit Maintenance Capability,” in 13th AIAA/USU Conference on Small Satellites, Logan, Utah, 1999.
[28] T. Y. Lin, J. C. Juang, and Vina, “Design and Verification of the Operating Procedure of Attitude Determination and Control Subsystem of a Nanosatellite,” in Automatic Control Conference (CACS), 2014 CACS International, 2014, pp. 51-56.
[29] J. Thoemel, “Current Status of QB50 project,” presented at ESTEC CubeSat Industry Days, 2015.
[30] L. W. Chen and T. C. Huang, “Implementation of Fault Tolerant Module in PHOENIX CubeSat,” in 10th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany, 2015.
[31] L. W. Chen, Design and Implementation of the Fault Tolerance Module in PHOENIX CubeSat, M.S. thesis, National Cheng Kung University, 2015.
[32] J. Diebel, “Representing Attitude: Euler angles, unit quaternions, and rotation vectors,” Matrix, vol. 58, pp. 15-16, 2006.
[33] A. S. Mohammed, M. Benyettou, Y. Bentoutou, A. Boudjemai, Y. Hashida, and M. Sweeting, “Three-Axis Active Control System for Gravity Gradient Stabilised Microsatellite,” Acta Astronautica, vol. 64, pp. 796-809, 2009.
[34] J. R. Wertz, Spacecraft Attitude Determination and Control vol. 73: Springer Science & Business Media, 2012.
[35] S. Schalkowsky and M. Harris. Spacecraft Magnetic Torques: National Aeronautics and Space Administration, Technical Report NASA-SP-8018, 1969.
[36] 莊智清, 衛星導航, 全華圖書, 2012.
[37] C. R. O. Longo and S. L. Rickman, Method for the Calculation of Spacecraft Umbra and Penumbra Shadow Terminator Points: National Aeronautics and Space Administration, Technical Paper 3547, 1995.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw