進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1708201510411500
論文名稱(中文) 以熱注入法液相合成二硫化錫層狀奈米結構之分析及其光電特性之研究
論文名稱(英文) Synthesis and characteristics of layered tin disulfide nanostructure via hot injection method
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 王心邑
研究生(英文) Hsin-I Wang
學號 N56024389
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-黃肇瑞
共同指導教授-王聖璋
口試委員-李丁福
口試委員-向性一
口試委員-盧鴻華
中文關鍵字 二硫化錫  熱注入法  層狀奈米結構 
英文關鍵字 tin disulfide  SnS2  hot injection  layered nanostructure 
學科別分類
中文摘要 本研究利用熱注入法製備層狀之二硫化錫奈米材料,其將氧化錫及油酸所合成之油酸錫錯化合物(Sn(OA)x)作為錫源,快速注入至以硫代乙醯胺(TAA)與油胺所合成之硫前驅源溶液中,進而使錫離子與硫離子快速析出成長為層狀的二硫化錫奈米結構。藉由改變硫前驅源的濃度以及反應時間作為變因,針對二硫化錫之形貌、結晶性以及成長機制進行探討。由結果可知,當反應時間為一小時且前驅源之錫硫比為1:5時,可合成出二硫化錫的單一相,其片狀結構之尺寸約為400奈米。經由所歸納之成長機制可知,隨著反應時間的增加,大尺寸的二硫化錫之晶體將不會持續生長,而小尺寸的晶體將會消失,但當尺寸逐漸均一化時,其層狀結構逐漸分離並降低其厚度。
為了進一步量測二硫化錫之光電性質,本實驗以旋轉塗佈法將二硫化錫粉末塗佈於光學玻璃上後,經過200 oC的燒結並持溫2小時,使薄膜具有較佳的結晶性以及附著性。由結果可知,二硫化錫單一相所形成的薄膜具有均勻的表面結構以及高度的(001)結晶面,進而影響其光電特性。由吸收光譜的結果可觀察到,二硫化錫薄膜在波長為500奈米之前就有明顯的吸收,且其具有2.35 eV的寬能隙。在電特性上,雖然二硫化錫薄膜具有高達2200 Ω的電阻值,但其在電化學環境下的開路電壓值為0.12 V,遠低於電解水所需的電壓1.23 V,使本材料具有應用於水解製氫催化劑的潛力。
英文摘要 Layered SnS2 nanostructures were synthesized via a facile hot injection method during which the tin precursor was quickly injected into the sulfur precursor and the precipitation of tin and sulfur ions leads to the growth of layered SnS2 nanosheets. In this study, we have altered the precursor concentration and reaction time to analyze the growth mechanism of SnS2. The results show that stable SnS2 nanosheets can be obtained when the precursor ratio of tin and sulfur was 1:5 with a one hour reaction time period and the maximum particle size obtained is about 400 nm. For a prolonged reaction time, the particle size will not increase but only result in a change in the thickness of the layered nanosheets. SnS2 thin films were deposited on a glass substrate using the spin coating technique followed by annealing at 200 oC for 2 hrs. The film structure is uniform and shows a preferred orientation along the (001) plane. Analysis of the UV-visible spectrum shows strong absorption for the SnS2 film in the visible region of the electromagnetic spectrum and its band gap is observed at about 2.4 eV. Furthermore, it can be seen from the I-V curve results that the SnS2 thin film has a resistance of 2200 Ω and its on-set potential is 0.12 V, making it suitable for electrocatalytic applications.
論文目次 摘要 I
Abstract II
致謝 VIII
目錄 IX
表目錄 XI
圖目錄 XII
第一章、緒論 1
1.1 前言 1
1.2 研究動機 2
第二章、文獻回顧 3
2.1 二維奈米材料 3
2.2 二硫化錫之性質及應用 7
2.3 二硫化錫之合成方法 10
2.4 二硫化錫之成長機制 18
第三章、實驗方法與步驟 23
3.1 實驗藥品 23
3.2 實驗方法 24
3.2.1 製備二硫化錫粉末 24
3.2.2 製備二硫化錫薄膜 28
3.3 分析儀器 30
3.3.1 X光繞射儀 (X-ray diffraction, XRD) 30
3.3.2 場發射掃描式電子顯微鏡 (Field emission scanning electron microscopy, FE-SEM) 30
3.3.3 高解析穿透式電子顯微鏡 (High resolution transmission electron microscopy, HR-TEM) 31
3.3.4 多功能X光薄膜繞射儀 (Multipurpose X-ray thin film diffraction) 31
3.3.5 紫外光-可見光-近紅外光分光光譜儀 (UV-Visible-NIR spectrophotometer) 32
3.4.6 半導體參數測定儀 (Semiconductor parameter analyzer) 32
3.4.7 恆電位儀 (Potentiostant) 32
3.4.8 熱重分析儀 (Thermal gravim analysis, TGA) 33
第四章、結果與討論 34
4.1 改變硫前驅源濃度對二硫化錫粉末之影響 34
4.2 改變反應時間對二硫化錫粉末之影響 41
4.3 二硫化錫之成長機制 47
4.4 二硫化錫薄膜之物理性質 51
4.5 二硫化錫薄膜之光電特性 56
第五章、結論 60
參考文獻 61
參考文獻 [1] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. and Geim, A.K. (2005), "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences, 102 (30) pp. 10451-10453.
[2] Edwards, R.S. and Coleman, K.S. (2013), "Graphene synthesis: relationship to applications," Nanoscale, 5 (1) pp. 38-51.
[3] Seo, J.-w., Jang, J.-t., Park, S.-w., Kim, C., Park, B. and Cheon, J. (2008), "Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries," Advanced Materials, 20 (22) pp. 4269-4273.
[4] Chen, D., Chen, W., Ma, L., Ji, G., Chang, K. and Lee, J.Y. (2014), "Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion," Materials Today, 17 (4) pp. 184-193.
[5] Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G. and McEuen, P.L. (2008), "Impermeable atomic membranes from graphene sheets," Nano Lett, 8 (8) pp. 2458-2462.
[6] Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, 321 (5887) pp. 385-388.
[7] Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H.L. (2008), "Ultrahigh electron mobility in suspended graphene," Solid State Communications, 146 pp. 351-355.
[8] Kadantsev, E.S. and Hawrylak, P. (2012), "Electronic structure of a single MoS2 monolayer," Solid State Communications, 152 (10) pp. 909-913.
[9] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G. and Wang, F. (2010), "Emerging photoluminescence in monolayer MoS2," Nano Lett, 10 (4) pp. 1271-1275.
[10] Zhou, M., Lou, X.W. and Xie, Y. (2013), "Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities," Nano Today, 8 (6) pp. 598-618.
[11] Sivula, K., Formal, F.L. and Grätzel, M. (2011), "Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes," ChemSusChem, 4 (4) pp. 432-449.
[12] Cho, I.S., Chen, Z., Forman, A.J., Kim, D.R., Rao, P.M., Jaramillo, T.F. and Zheng, X. (2011), "Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production," Nano Lett, 11 (11) pp. 4978–4984.
[13] Yoffe, A.D. (2001), "Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems," Advances in Physics, 50 (1) pp. 1-208.
[14] Bickley, R.I., González-Carreño, T., Palmisano, L., Tilley, R.J.D. and Williams, J.M. (1997), "Relative proportions of rutile and pseudo-brookite phases in the Fe(III)-TiO2 system at elevated temperature," Materials Chemistry and Physics, 51 (1) pp. 47–53.
[15] Sun, Y., Wu, C., Long, R., Cui, Y., Zhang, S. and Xie, Y. (2009), "Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature," Chemical Communications, (30) pp. 4542-4544.
[16] Sun, Y., Xie, Y., Wu, C., Zhang, S. and Jiang, S. (2010), "Aqueous synthesis of mesostructured BiVO4 quantum tubes with excellent dual response to visible light and temperature," Nano Research, 3 (9) pp. 620-631.
[17] Jiang, J., Zhao, K., Xiao, X. and Zhang, L. (2012), "Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets," J Am Chem Soc, 134 (10) pp. 4473-4476.
[18] Xu, H., Wang, W. and Zhu, W. (2006), "Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties," Journal of Physical Chemistry B 110 (28) pp. 13829–13834.
[19] Choi, K.-S. (2010), "Shape Effect and Shape Control of Polycrystalline Semiconductor Electrodes for Use in Photoelectrochemical Cells," Journal of Physical Chemistry Letters, 1 (15) pp. 2244–2250.
[20] Zhang, Y.C., Du, Z.N., Li, S.Y. and Zhang, M. (2010), "Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2•2H2O and S powders," Applied Catalysis B: Environmental, 95 pp. 153-159.
[21] Sun, Y., Cheng, H., Gao, S., Sun, Z., Liu, Q., Liu, Q., Lei, F., Yao, T., He, J., Wei, S. and Xie, Y. (2012), "Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting," Angewandte Chemie International Edition, 51 pp. 8727 –8731.
[22] Lucena, R., Fresno, F. and Conesa, J.C. (2012), "Hydrothermally synthesized nanocrystalline tin disulphide as visible light-active photocatalyst: Spectral response and stability," Applied Catalysis A: General, 415-416 pp. 111-117.
[23] Panda, S.K., Antonakos, A., Liarokapis, E., Bhattacharya, S. and Chaudhuri, S. (2007), "Optical properties of nanocrystalline SnS2 thin films," Materials Research Bulletin, 42 (3) pp. 576-583.
[24] Umar, A., Akhtar, M.S., Dar, G.N., Abaker, M., Al-Hajry, A. and Baskoutas, S. (2013), "Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes," Talanta, 114 pp. 183-190.
[25] Tan, F., Qu, S., Zeng, X., Zhang, C., Shi, M., Wang, Z., Jin, L., Bi, Y., Cao, J., Wang, Z., Hou, Y., Teng, F. and Feng, Z. (2010), "Photovoltaic effect of tin disulfide with nanocrystalline/amorphous blended phases," Solid State Communications, 150 pp. 58–61.
[26] Tan, F., Qu, S., Wu, J., Liu, K., Zhou, S. and Wang, Z. (2011), "Preparation of SnS2 colloidal quantum dots and their application in organic/inorganic hybrid solar cells," Nanoscale Res Lett, 6 (1) pp. 298.
[27] Domingo, G., Itoga, R.S. and Kannewurf, C.R. (1966), "Fundamental Optical Absorption in SnS2 and SnSe2," Physical Review, 143 pp. 536.
[28] Zhong, H., Zhou, P., Yue, L., Tang, D. and Zhang, L. (2013), "Micro/nano-structured SnS2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries," Journal of Applied Electrochemistry, 44 (1) pp. 45-51.
[29] Kim, T.-J., Kim, C., Son, D., Choi, M. and Park, B. (2007), "Novel SnS2-nanosheet anodes for lithium-ion batteries," Journal of Power Sources, 167 (2) pp. 529-535.
[30] Lei, D., Zhang, M., Qu, B., Ma, J., Li, Q., Chen, L., Lu, B. and Wang, T. (2013), "Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries," Electrochimica Acta, 106 pp. 386-391.
[31] Wu, Y.P., Rahm, E. and Holze, R. "Carbon anode materials for lithium ion batteries," Journal of Power Sources, 114 pp. 228–236.
[32] Su, G., Hadjiev, V.G., Loya, P.E., Zhang, J., Lei, S., Maharjan, S., Dong, P., P, M.A., Lou, J. and Peng, H. (2015), "Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application," Nano Lett, 15 (1) pp. 506-513.
[33] DB, M., LL, K., CE, M., M, C. and A, A. (2004), "High-mobility ultrathin semiconducting films prepared by spin coating," Nature, 428 pp. 299-303.
[34] HS, S., SL, L., L, G., Y, X., K, U., J, T., YB, C. and K, T. (2013), "High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits," Nanoscale, 5 pp. 9666-9670.
[35] Gou, X.-L., Chen, J. and Shen, P.-W. (2005), "Synthesis, characterization and application of SnSx (x=1, 2) nanoparticles," Materials Chemistry and Physics, 93 (2-3) pp. 557-566.
[36] Geng, H., Su, Y., Wei, H., Xu, M., Wei, L., Yang, Z. and Zhang, Y. (2013), "Controllable synthesis and photoelectric property of hexagonal SnS2 nanoflakes by Triton X-100 assisted hydrothermal method," Materials Letters, 111 pp. 204-207.
[37] Wang, L., Zhuo, L., Yu, Y. and Zhao, F. (2013), "High-rate performance of SnS2 nanoplates without carbon-coating as anode material for lithium ion batteries," Electrochimica Acta, 112 pp. 439-447.
[38] Shi, W., Huo, L., Wang, H., Zhang, H., Yang, J. and Wei, P. (2006), "Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures," Nanotechnology, 17 (12) pp. 2918-2924.
[39] Chang, H., In, E., Kong, K.J., Lee, J.O., Choi, Y. and Ryu, B.H. (2005), "First-principles studies of SnS2 nanotubes: a potential semiconductor nanowire," Journal of Physical Chemistry B, 109 (1) pp. 30-32.
[40] Burton, L.A. and Walsh, A. (2012), "Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3," The Journal of Physical Chemistry C, 116 (45) pp. 24262-24267.
[41] Radovsky, G., Popovitz-Biro, R. and Tenne, R. (2012), "Study of Tubular Structures of the Misfit Layered Compound SnS2/SnS," Chemistry of Materials, 24 (15) pp. 3004-3015.
[42] Brennan, R.O. (1952), "The Interlayer Binding in Graphite," Journal of Chemical Physics, 20 pp. 40-48.
[43] Feng, J., Chen, J., Geng, B., Feng, H., Li, H., Yan, D., Zhuo, R., Cheng, S., Wu, Z. and Yan, P. (2010), "Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism," Applied Physics A, 103 (2) pp. 413-419.
[44] Yang, J., Tian, Q., Chen, Z., Xu, X. and Zha, L. (2012), "Synthesis and characterization of tin disulfide hexagonal nanoflakes via solvothermal decomposition," Materials Letters, 67 (1) pp. 32-34.
[45] Hu, X., Song, G., Li, W., Peng, Y., Jiang, L., Xue, Y., Liu, Q., Chen, Z. and Hu, J. (2013), "Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals," Materials Research Bulletin, 48 (6) pp. 2325-2332.
[46] Davar, F., Salavati-Niasari, M. and Fereshteh, Z. (2010), "Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor," Journal of Alloys and Compounds, 496 pp. 638-643.
[47] Liang, X. (2014), "Transition from Tubes to Sheets—A Comparison of the Properties and Applications of Carbon Nanotubes and Graphene," pp. 519-568.
[48] Peng, Z.A. and Peng, X. (2001), "Mechanisms of the Shape Evolution of CdSe Nanocrystals," J Am Chem Soc, 123 (7) pp. 1389–1395.
[49] Peng, Z.A. and Peng, X. (2002), "Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:  Nucleation and Growth," J Am Chem Soc, 124 pp. 3343–3353.
[50] Penn, R.L. and Banfield, J.F. (1999), "Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania," Geochimica et Cosmochimica Acta, 63 (10) pp. 1549–1557.
[51] LIU, X.Y., BOEK, E.S., BRIELS, W.J. and BENNEMA, P. (1994), "Prediction of crystal growth morphology based on structural analysis of the solid–fluid interface," Nature, 374 pp. 342-345.
[52] Ma, J., Lei, D., Mei, L., Duan, X., Li, Q., Wang, T. and Zheng, W. (2012), "Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties," CrystEngComm, 14 (3) pp. 832-836.
[53] Deng, Z., Han, D. and Liu, Y. (2011), "Colloidal synthesis of metastable zinc-blende IV-VI SnS nanocrystals with tunable sizes," Nanoscale, 3 (10) pp. 4346-4351.
[54] Avellaneda, D., Nair, M.T.S. and Nair, P.K. (2008), "Polymorphic Tin Sulfide Thin Films of Zinc Blende and Orthorhombic Structures by Chemical Deposition," Journal of The Electrochemical Society, 155 (7) pp. D517.
[55] Wei, R., Zhou, T., Hu, J. and Li, J. (2014), "Glutatione modified ultrathin SnS2 nanosheets with highly photocatalytic activity for wastewater treatment," Materials Research Express, 1 (2) pp. 025018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw