進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1708201400412700
論文名稱(中文) 具高效率及內建補償網路之遲滯電流模式非反向升-降壓型直流-直流轉換器
論文名稱(英文) A High Efficiency Hysteretic-Current-Mode Non-Inverting Buck-Boost DC-DC Converter with Built-In Compensation Network
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 洪祥恩
研究生(英文) Xiang-En Hong
學號 N26010287
學位類別 碩士
語文別 英文
論文頁數 109頁
口試委員 口試委員-梁從主
口試委員-張順志
口試委員-張簡樂仁
口試委員-黃育賢
指導教授-魏嘉玲
中文關鍵字 遲滯電流模式  升-降壓  直流-直流轉換器  高效率 
英文關鍵字 hysteretic-current-mode  buck-boost  DC-DC converter  high efficiency 
學科別分類
中文摘要 由於可攜式電子產品的蓬勃發展,許多高規格與多功能之電子產品(例如:智慧型手機、平板電腦…等等)市場需求大增,針對此類電子產品,本論文提出一個擁有高效率、並將補償網路內置晶片的非反向升–降壓型直流-直流轉換器。有別於傳統之升–降壓功率級的切換,本論文採用升壓或降壓的切換,可降低導通損失與切換損失,以提高轉換效率;而在系統控制方面,採用遲滯電流的控制方法,讓本轉換器工作於輕載時自動降頻,以更進一步減少切換損失,而工作於重載時擁有類似脈波寬度調變控制之表現,得到較小之輸出漣波。除此之外,本論文使用電容倍乘器與內建電阻,將晶片外部之被動補償元件內建於晶片中。如此一來,此轉換器便可擁有更好的系統晶片整合,及低成本與高效率之特性。
本論文設計之晶片使用台灣積體電路公司0.35 μm 2P4M 5 V混合訊號製程,晶片大小約為4 mm2。當輸入電壓為2.5~5 V、輸出負載電流為10~400 mA時,輸出電壓均可穩定於3.3 V,並且最高效率可達到98%。
英文摘要 Due to the development of portable electronic devices, more and more high performance, battery-powered, and multifunctional devices (e.g., smartphone, tablet) are introduced to the market. For these devices, a high-efficiency buck-boost DC-DC converter with built-in compensation network is proposed in this thesis. This converter uses buck or boost mode (BOBM) control to reduce both switching and conduction losses, which is different from the traditional buck-boost conversion. By using hysteretic-current-mode (HCM), the light-load efficiency can be further improved due to reduced switching frequency. Moreover, the capacitor multiplier and on-chip resistors are used to replace traditionally off-chip compensation network. Therefore, the proposed converter has the advantages of low-cost and high efficiency, and is also good for system-on-chip (SoC) applications.
The chip was fabricated by using TSMC 0.35 μm 2P4M 5 V mixed-signal process, and the chip size is about 4 mm2. The input voltage range is 2.5–5 V, the output voltage is set to 3.3V, and the load current can range from 10 to 400 mA. The measured maximal efficiency is 98%.
論文目次 口試合格證明(中) I
口試合格證明(英) II
誌謝 III
摘要 IV
Abstract V
Contents VI
List of Figures X
List of Tables XVI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Prior Arts 1
1.3 Research Goal 3
1.4 Thesis Organization 3
Chapter 2 Literature Review 4
2.1 Topologies of DC-DC Converters 4
2.1.1 Basic Converter Topologies 4
2.1.2 Non-Inverting Buck-Boost Converter Topologies 5
2.2 Feedback Mode 7
2.2.1 Voltage Mode 7
2.2.2 Current Mode 7
2.2.3 Comparison 10
2.3 Control Scheme 11
2.3.1 Pulse Width Modulation (PWM) Control 11
2.3.2 Pulse Frequency Modulation (PFM) Control 12
2.3.3 Ripple-Based Control 12
2.3.4 Comparison 13
2.4 Recent Researches in RBC 15
2.4.1 Pros and Cons of Hysteretic Control 15
2.4.2 Issue and Solution 16
2.4.3 Boost Converter with Hysteretic Control 27
Chapter 3 Design of a Buck-Boost Converter
with Hysteretic-Current-Mode Control 31
3.1 Design Concept 31
3.2 System Design 31
3.2.1 Architecture 31
3.2.2 Small Signal Analysis 32
3.2.3 Steady State Analysis 40
3.3 Circuit Design 41
3.3.1 PI Compensator 42
3.3.2 Bandgap Reference Circuit 46
3.3.3 Current-Sensing Circuit 49
3.3.4 Hysteretic-Current Controller 52
3.3.5 Discontinuous Conduction Mode Controller 57
3.3.6 Gate Controller and Power MOS 60
Chapter 4 Simulation Results 65
4.1 Simulation of Sub-Circuits 65
4.1.1 Simulation of Current-Sensing Circuit 65
4.1.2 Simulation of Hysteretic Current Windows 67
4.2 Simulation of the Whole System 69
4.2.1 Simulation of Steady State 69
4.2.2 Simulation of Transient Response 73
4.2.3 Simulation of Efficiency 77
Chapter 5 Layout and Measurement Results 78
5.1 Layout and Bond Wire Model 78
5.1.1 Layout and Consideration 78
5.1.2 Bond Wire Model 80
5.2 Bonding Diagram 81
5.3 Measurement Environment and Consideration 82
5.4 Measurement Results of Sub-Circuits 86
5.5 Current-Sensing Circuit 86
5.6 Hysteretic Current Windows 88
5.7 Measurement Results of the Whole System 90
5.7.1 Measurement Results of Steady State 90
5.7.2 Measurement Results of Transient Response 94
5.7.3 Load Regulation 101
5.7.4 Line Regulation 101
5.7.5 Efficiency 102
5.8 Performance 103
Chapter 6 Conclusion and Future Work 105
Reference 106
參考文獻 [1] G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998.
[2] B. Gregoire, “A compact switched-capacitor regulated charge pump power supply,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1944–1953, Aug. 2006.
[3] C. L. Wei, C. H. Chen, K. C. Wu, and I. T. Ko, “Design of an average-current-mode noninverting buck-boost DC-DC converter with reduced switching and conduction losses,” IEEE Trans. Power Electron., vol. 27, no.12, pp. 4934–4943, Dec. 2012.
[4] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer Academic, 2001.
[5] P. Midya, K. Haddad, and M. Miller, “Buck or boost tracking power converter,” IEEE Power Electron. Lett., vol. 2, no. 4, pp. 131–134, Dec. 2004.
[6] C. Deisch, “Simple switching control method changes power converter into a current source,” in Proc. IEEE Power Electron. Specialists Conf., 1978, pp. 300–306.
[7] S. Hsu, A. Brown, L. Rensink, and R. Middlebrook, “Modeling and analysis of switching DC-to-DC converters in constant frequency current programmed mode,” in Proc. IEEE Power Electron. Specialists Conf., 1979, pp. 284–301.
[8] L. Dixon, “Average current mode control of switching power supplies,” in Proc. Unitrode Power Supply Design Sem., 1990.
[9] Y. Chen, C. K. Tse, S. Qiu, L. Lindenmuller, and W. Schwarz, “Coexisting fast-scale and slow-scale instability in current-mode controlled DC/DC converters: analysis, simulation and experimental results,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 10, pp. 3335–3348, Nov. 2008.
[10] R. Redl and J. Sun, “Ripple-based control of switching regulator – an overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009.
[11] Y. Zheng, H. Chen, and K. N. Leung, “A fast-response pseudo-PWM buck converter with PLL-based hysteresis control,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 7, pp. 1167–1174, Jul. 2012.
[12] T. H. Wu, J. J. Chen, and Y. S. Hwang, “A high-efficiency hysteresis buck converter using auto selectable frequency-locked techniques,” in IEEE Int. Conf. of Electron Devices and Solid-State Circuits (EDSSC), 2013, pp. 1–2.
[13] F. Su, W. H. Ki, and C. Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008.
[14] P. Li, D. Bhatia, L. Xue, and R. Bashirullah, “A 90-240 MHz hysteretic controlled DC-DC buck converter with digital phase locked loop synchronization,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2108–2119, Sep. 2011.
[15] R. Redl, Y. Li, and G. Reizik, “Switched noise filter for the buck converter using the output ripple as the PWM ramp,” in Proc. IEEE APEC, 2005, pp. 918–924.
[16] Y. H. Lee, W. W. Lai, W. Y. Pai, K. H. Chen, M. J. Du, and S. H. Cheng, “Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multi-layer ceramic capacitors,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2366–2376, May 2013.
[17] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829–838, Apr. 2010.
[18] F. Su and W. H. Ki, “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in Proc. IEEE Int. Solid-State Circuits Conf., 2009, pp. 446–447.
[19] C. S. Huang, C. Y. Wang, J. H. Wang, and C. H. Tsai, “A fast-transient quasi-V2 switching buck regulator using AOT control,” in Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 53–56.
[20] J. S. Guo, S. M. Lin, and C. H. Tsai, “A hysteretic boost regulator with emulated-ramp feedback (ERF) Current-Sensing Technique for LED driving applications,” in Proc. IEEE Asian Solid-State Circuits Conf., 2013, pp. 61–64.
[21] Y. P. Su, Y. K. Luo, Y. C. Chen, and K. H. Chen, “Current-mode synthetic control technique for high-efficiency DC-DC boost converters over a wide load range,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 1, no. 9, pp. 1–13, Aug. 2013.
[22] W. H. Ki, K. M. Lai, and C. Zhan, “Charge balance analysis and state transition analysis of hysteretic voltage mode switching converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 1142–1153, May 2011.
[23] J. C. Tsai, C. L. Chen, Y. H. Lee, H. Y. Yang, M. S. Hsu, and K. H. Chen, “Modified hysteretic current control (MHCC) for improving transient response of boost converter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1967–1979, Aug. 2011.
[24] J. H. Park and B. H. Cho, “Small signal modeling of hysteretic current mode control using the PWM switch model,” in IEEE COMPEL, 2006, pp. 225-230.
[25] B. Sahu and G. A. Rincon-Mora, “A high-efficiency linear RF power amplifier with power-tracking dynamically adaptive buck-boost supply,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 112–120, Jan. 2004.
[26] P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 719–730, Mar. 2010.
[27] J. J. Chen, P. N. Shen, and Y. S. Hwang, “A high efficiency positive buck–boost converter with mode-select circuit and feed-forward techniques,” IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4240–4247, Sep. 2013.
[28] M. Lin, Y. S. Huang, A. Ehrhart, Y. H. Lee, C. C. Chiu, B. Wicht, and K. H. Chen, “Authentic mode-toggled detector with fast transient response under wide load range buck-boost converter,” in Proc. IEEE Int. Symposium on Circuits and Syst., 2013, pp. 2952–2955.
[29] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, Inc., 1997.
[30] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford, 2002.
[31] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[32] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw