進階搜尋


下載電子全文  
系統識別號 U0026-1708201117252500
論文名稱(中文) 覓隨活動的練習頻率對手眼行為適應性改變之影響
論文名稱(英文) The Effect of Target Rate for Tracking Practice on Adaptive Changes in Oculomanual Behavior
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 99
學期 2
出版年 100
研究生(中文) 周瑞瑜
研究生(英文) Jui-Yu Chou
學號 t66981033
學位類別 碩士
語文別 英文
論文頁數 53頁
口試委員 指導教授-黃英修
口試委員-成戎珠
口試委員-楊政峰
中文關鍵字 頻率需求  動作學習  覓隨活動  眼動策略  眼手協調 
英文關鍵字 frequency demand  motor learning  visuomotor tracking  visual strategy 
學科別分類
中文摘要 研究目的: 覓隨活動需要精密的手眼協調以完成作業,覓隨頻率會改變動作控制的模式。慢頻活動傾向使用閉鏈式控制模式,亦即經由感覺回饋修正執行中動作的錯誤;快頻活動則是利用預測性控制的預先規劃動作。儘管有許多研究對覓隨活動進行探討,但是大部分研究都著重在手的外部表現,尤其忽略重複覓隨練習後,對視覺策略造成的適應性改變。本研究的目的在於比較經過快慢頻率不同的覓隨活動練習後,眼球活動的適應性變化與手眼協調學習後的差異。
研究方法: 24位健康成年人參與本實驗(年齡:20-29歲),他們被隨機分配至快頻練習與慢頻練習兩組,分別執行快頻與慢頻覓隨練習作業。慢頻練習組的目標曲線是由0.3 赫茲以及0.5赫茲的正弦波型組合而成;快頻練習組的目標曲線則是1.0赫茲與1.2赫茲的正弦組合波。兩組受試者皆經每次20秒共計16次的練習,練習過程以手指施力程度去追隨目標曲線的變化,完成練習後休息30分鐘,再進行後測試驗。以施力計和眼動儀記錄執行覓隨作業時手指作用力與眼球位移變化,手指與眼睛的追蹤表現以手指作用力、眼球位移與目標訊號的耦合程度、時間差、與覓隨頻率的準確性表示,其中頻率準確性是手指以及眼睛活動頻率中包含目標頻率的程度。眼球活動策略則進一步以跳視(saccade)速度、跳視幅度、跳視頻率、以及追瞄增益(pursuit gain)來評估。最後比較兩組受試者眼手運動的各項參數,在學習前後改變量以及練習造成相對進步量之不同((學習後-學習前)/學習前)。
研究結果:兩組受試者在練習前後手指與眼睛的覓隨表現皆出現明顯的改變。但是,快頻練習組在手指耦合程度以及手眼耦合的相對進步量都大於慢組練習組。同樣地,眼睛追蹤的時間延遲因練習頻率的不同而出現組間差異,快頻練習組較慢組練習組有更明顯的時間延遲下降;練習前後眼球活動的適應改變亦受目標頻率快慢的影響,練習造成的組間差異在跳視參數最為明顯,覓隨練習使慢頻練習組在跳視速度與跳視幅度較快頻練習組產生更多的下降,兩組受試者的跳視頻率雖因練習而減少但未出現組間差異。兩組受試者的追瞄增益皆不受練習影響。
結論: 不同頻率的短期覓隨練習造成手指表現與跳視行為的適應性差異。本篇研究發現經由快頻或慢頻的覓隨練習會發展出不同的視覺策略以及手眼協調機制。與目標頻率有關的手眼行為適應性改變可能與練習過程中,選擇性地使用迴授或前饋機制有關;跳視速度、幅度在練習後的組間差異,更反應出兩組受試者使用快速或慢速的視覺路徑以感知不同運動學特徵的目標曲線。覓隨活動過程的動作感知深受目標頻率的影響而選擇開鏈式或閉鏈式的學習策略。
英文摘要 Objective: Visuomotor tracking needs coordinative control of the ocular and manual effectors, and tracking control varies characteristically with frequency demands. Visuomotor tracking with slow rate relies on on-line feedback process to remedy movement deviations, whereas visuomotor tracking with fast rate involves a feedforward process to preprogram movement execution. Although a number of studies have been conducted on visuomotor tracking, how short-term practice affects oculomotor behaviors and underlying visual strategies for skilled tracking have not been explored. The aim of this study was to contrast adaptive changes in visuomotor behaviors and eye-hand coupling between repetitive tracking practices with slow and fast target frequencies.
Methods: Twenty-four healthy volunteers (20-29 years old) were recruited and randomly assigned to the slow or fast groups. The subjects in the slow group were asked to practice tracking a combined 0.3 Hz and 0.5 Hz sinusoidal target, and the fast group was alternatively provided with a combined 1.0 Hz and 1.2 Hz sinusoidal target for tracking. Eye movements and concurrent manual outputs were registered across the 16 practice sessions and in the retention test (20 seconds/session) after a 30 minutes rest. Manual and visual performances in temporal domain were quantified with tracking congruency, lag-time, and spectral precision of tracking. Eye movement patterns were further parameterized with saccade peak velocity, saccade amplitude, saccade frequency, and pursuit gain. Adaptive changes in all visuomotor variables before and after practices were standardized and contrasted between groups to examine the rate-specific practice effect on oculomotor control and eye-hand coupling.
Results: Both slow and fast groups demonstrated significant improvements in tracking congruency, eye-hand coupling, and spectral precision in tracking after practices. Moreover, the fast group gained a greater improvement in manual tracking congruency and eye-hand coupling than the slow group. Also, the fast group exhibited a more decrease in lag-time of the ocular tracking after practices than the slow group. Manual consequence advancement associated with group-dependent changes in ocular behaviors, especially for parametric adjustments of saccadic metric. Compared with the fast group, the slow group exhibited a more pronounced reduction in saccade amplitude and peak saccade velocity after visuomotor practice. Although practice led to a fewer saccade incidence, there was no significant group difference in practice-induced modulation of saccade incidence. Unexpectedly, pursuit gain was invariant to tracking practice for the both groups.
Conclusion: Short-term tracking practices of different target rates brought about rate-specific modulations in manual performances and saccadic movement. The present study first characterized the fact that the subjects could develop differing eye-hand coupling and visual strategies to advance tracking of a slow or a fast target. The rate-specific adaptive changes in oculo-manual behaviors might involve with selective use of feedback and feedforward process in the course of practice sessions. Variations in saccadic variables after practices for both groups indicated that frequency demand enabled flexible updating visual strategies with slow or fast visual loops to feature target movement of differing kinematic natures. In conclusion, perception-action coupling during oculo-manual tracking was subject to frequency demand that impacted acquisition of tracking skill on a feedback or feedforward basis.
論文目次 Abstract I
摘要 IV
致謝 VI
List of tables IX
List of figures X
Chapter 1. Introduction 1
1.1 Fundamentals of visuomotor tracking 1
1.2 Control of visuomotor tracking 2
1.3 Motor learning and time constraint 4
1.4 Rationales, research questions, and hypotheses 6
Chapter 2. Methods 8
2.1 Subjects 8
2.2 Experimental procedures 8
2.3 Data analysis 11
2.4 Statistical analysis 13
Chapter 3. Results 15
3.1 Performance outcomes 15
3.1.1 Tracking congruency 15
3.1.2 Corresponding lag-time 16
3.1.3 Summated relative power magnitude (SRPM) 17
3.2 Eye movement properties 24
3.2.1 Saccade peak velocity 24
3.2.2 Saccade amplitude 24
3.2.3 Saccade frequency 25
3.2.4 Pursuit gain 26
Chapter 4. Discussion 33
4.1 Behavioral performances 33
4.1.1 Rate-dependent practice effect on manual and ocular behaviors 33
4.1.2 Rate-dependent practice effect on eye-hand coupling 36
4.2 Visual strategies 37
Chapter 5. Conclusion 41
References 42
自述 53
參考文獻 1. Abahnini K, Proteau L. The role of peripheral and central visual information for the directional control of manual aiming movements. Can J Exp Psychol.53(2):160-175, 1999.
2. Abbs JH, Gracco VL, Cole KJ. Control of multimovement coordination: sensorimotor mechanisms in speech motor programming. J Mot Behav.16(2):195-231, 1984.
3. Adams JA. A closed-loop theory of motor learning. J Mot Behav.3(2):111-149, 1971.
4. Barnes GR. Cognitive processes involved in smooth pursuit eye movements. Brain Cogn.68(3):309-326, 2008.
5. Barnes GR, Barnes DM, Chakraborti SR. Ocular pursuit responses to repeated, single-cycle sinusoids reveal behavior compatible with predictive pursuit. J Neurophysiol.84(5):2340-2355, 2000.
6. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol.16(6):645-649, 2006.
7. Blouin J, Teasdale N, Bard C, Fleury M. Directional control of rapid arm movements: the role of the kinetic visual feedback system. Can J Exp Psychol.47(4):678-696, 1993.
8. Brown SH, Kessler KR, Hefter H, Cooke JD, Freund HJ. Role of the cerebellum in visuomotor coordination. I. Delayed eye and arm initiation in patients with mild cerebellar ataxia. Exp Brain Res.94(3):478-488, 1993.
9. Bullier J, Schall JD, Morel A. Functional streams in occipito-frontal connections in the monkey. Behav Brain Res.76(1-2):89-97, 1996.
10. Buneo CA, Andersen RA. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia.44(13):2594-2606, 2006.
11. Chen-Harris H, Joiner WM, Ethier V, Zee DS, Shadmehr R. Adaptive control of saccades via internal feedback. J Neurosci.28(11):2804-2813, 2008.
12. Chou IH, Lisberger SG. The role of the frontal pursuit area in learning in smooth pursuit eye movements. J Neurosci.24(17):4124-4133, 2004.
13. Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R. Size of error affects cerebellar contributions to motor learning. J Neurophysiol.103(4):2275-2284, 2010.
14. Dartnall TJ, Jaberzadeh S, Miles TS, Nordstrom MA. Motor training decreases finger tremor and movement response time in a visuomotor tracking task. J Mot Behav.41(1):55-64, 2009.
15. Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci.4(11):423-431, 2000.
16. Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia.41(3):252-262, 2003.
17. Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A.99(2):1017-1022, 2002.
18. Eggert T, Guan Y, Bayer O, Buttner U. Saccades to moving targets. Ann N Y Acad Sci.1039:149-159, 2005.
19. Engel KC, Anderson JH, Soechting JF. Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. J Neurophysiol.84(3):1149-1156, 2000.
20. Feys P, Helsen W, Nuttin B, et al. Unsteady gaze fixation enhances the severity of MS intention tremor. Neurology.70(2):106-113, 2008.
21. Floyer-Lea A, Matthews PM. Changing brain networks for visuomotor control with increased movement automaticity. J Neurophysiol.92(4):2405-2412, 2004.
22. Freund HJ. Time control of hand movements. Prog Brain Res.64:287-294, 1986.
23. Gritsenko V, Kalaska JF. Rapid online correction is selectively suppressed during movement with a visuomotor transformation. J Neurophysiol.104(6):3084-3104, 2010.
24. Groenewegen HJ. The basal ganglia and motor control. Neural Plast.10(1-2):107-120, 2003.
25. Guo CC, Raymond JL. Motor learning reduces eye movement variability through reweighting of sensory inputs. J Neurosci.30(48):16241-16248, 2010.
26. Hamzei F, Dettmers C, Rijntjes M, et al. Visuomotor control within a distributed parieto-frontal network. Exp Brain Res.146(3):273-281, 2002.
27. Hay L, Beaubaton D. Visual correction of a rapid goal-directed response. Percept Mot Skills.62(1):51-57, 1986.
28. Hill H, Raab M. Analyzing a complex visuomotor tracking task with brain-electrical event related potentials. Hum Mov Sci.24(1):1-30, 2005.
29. Hocherman S, Levy H. The role of feedback in manual tracking of visual targets. Percept Mot Skills.90(3 Pt 2):1235-1248, 2000.
30. Hodges NJ, Hayes S, Horn RR, Williams AM. Changes in coordination, control and outcome as a result of extended practice on a novel motor skill. Ergonomics.48(11-14):1672-1685, 2005.
31. Hufschmidt A, Lucking CH. Abnormalities of tracking behavior in Parkinson's disease. Mov Disord.10(3):267-276, 1995.
32. Iwamoto Y, Kaku Y. Saccade adaptation as a model of learning in voluntary movements. Exp Brain Res.204(2):145-162, 2010.
33. Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain.121:1437-1449, 1998.
34. Knight CA, Kamen G. Enhanced motor unit rate coding with improvements in a force-matching task. J Electromyogr Kinesiol.14(6):619-629, 2004.
35. Kojima Y, Soetedjo R, Fuchs AF. Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci.30(10):3715-3727, 2010.
36. Machner B, Sprenger A, Kompf D, Heide W. Cerebellar infarction affects visual search. Neuroreport.16(13):1507-1511, 2005.
37. Magill RA. Motor learning and control :concepts and applications. 8th ed. McGraw-Hill: New York, 2007.
38. Mascaro M, Battaglia-Mayer A, Nasi L, Amit DJ, Caminiti R. The eye and the hand: neural mechanisms and network models for oculomanual coordination in parietal cortex. Cereb Cortex.13(12):1276-1286, 2003.
39. McAuley JH, Farmer SF, Rothwell JC, Marsden CD. Common 3 and 10 Hz oscillations modulate human eye and finger movements while they simultaneously track a visual target. J Physiol.515 ( Pt 3):905-917, 1999.
40. McGibbon CA, Palmer T, Goldvasser D, Krebs DE. Kalman filter detection of blinks in video-oculography: applications for VVOR measurement during locomotion. J Neurosci Methods.106(2):171-178, 2001.
41. Miall RC, Jenkinson EW. Functional imaging of changes in cerebellar activity related to learning during a novel eye-hand tracking task. Exp Brain Res.166(2):170-183, 2005.
42. Miall RC, Reckess GZ, Imamizu H. The cerebellum coordinates eye and hand tracking movements. Nat Neurosci.4(6):638-644, 2001.
43. Miall RC, Weir DJ, Stein JF. Manual tracking of visual targets by trained monkeys. Behav Brain Res.20(2):185-201, 1986.
44. Mulder T, Hulstyn W. Sensory feedback therapy and theoretical knowledge of motor control and learning. Am J Phy Med.63:226-244, 1984.
45. Newell KM, Vaillancourt DE. Dimensional change in motor learning. Hum Mov Sci.20(4-5):695-715, 2001.
46. Oreja-Guevara C, Kleiser R, Paulus W, et al. The role of V5 (hMT+) in visually guided hand movements: an fMRI study. Eur J Neurosci.19(11):3113-3120, 2004.
47. Paillard J. Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can J Physiol Pharmacol.74(4):401-417, 1996.
48. Pew RW. Human perceptual-motor performance. John Wiley & Sons Inc: Hillsdale, New Jersey, 1974.
49. Prablanc C, Echallier JE, Jeannerod M, Komilis E. Optimal response of eye and hand motor systems in pointing at a visual target. II. Static and dynamic visual cues in the control of hand movement. Biol Cybern.35(3):183-187, 1979.
50. Prablanc C, Echallier JF, Komilis E, Jeannerod M. Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern.35(2):113-124, 1979.
51. Prablanc C, Martin O. Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol.67(2):455-469, 1992.
52. Robertson S, Collins J, Elliott D, Starkes J. The Influence of Skill and Intermittent Vision on Dynamic Balance. J Mot Behav.26(4):333-339, 1994.
53. Robinson DA, Gordon JL, Gordon SE. A model of the smooth pursuit eye movement system. Biol Cybern.55(1):43-57, 1986.
54. Rubin WM. Application of signal detection theory to error detection in ballistic motor skills. J Exp Psychol Hum Percept Perform.4(2):311-320, 1978.
55. Sailer U, Flanagan JR, Johansson RS. Eye-hand coordination during learning of a novel visuomotor task. J Neurosci.25(39):8833-8842, 2005.
56. Sarlegna F, Blouin J, Bresciani JP, Bourdin C, Vercher JL, Gauthier GM. Target and hand position information in the online control of goal-directed arm movements. Exp Brain Res.151(4):524-535, 2003.
57. Scheidt RA, Conditt MA, Secco EL, Mussa-Ivaldi FA. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. J Neurophysiol.93(6):3200-3213, 2005.
58. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. 4th ed. Human Kinetics: Champaign, IL, 2005.
59. Seidler RD, Noll DC, Thiers G. Feedforward and feedback processes in motor control. Neuroimage.22(4):1775-1783, 2004.
60. Shabbott BA, Sainburg RL. Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping. Exp Brain Res.203(1):75-87, 2010.
61. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci.33:89-108, 2010.
62. Siebner HR, Limmer C, Peinemann A, Bartenstein P, Drzezga A, Conrad B. Brain correlates of fast and slow handwriting in humans: a PET-performance correlation analysis. Eur J Neurosci.14(4):726-736, 2001.
63. Silver H, Shlomo N, Schwartz M, Hocherman S. Impaired visuomotor function in schizophrenic patients compared with control subjects. J Neuropsychiatry Clin Neurosci.14(1):72-76, 2002.
64. Sober SJ, Sabes PN. Multisensory integration during motor planning. J Neurosci.23(18):6982-6992, 2003.
65. Sober SJ, Sabes PN. Flexible strategies for sensory integration during motor planning. Nat Neurosci.8(4):490-497, 2005.
66. Soetedjo R, Fuchs AF, Kojima Y. Subthreshold activation of the superior colliculus drives saccade motor learning. J Neurosci.29(48):15213-15222, 2009.
67. Sosnoff JJ, Newell KM. Intermittency of visual information and the frequency of rhythmical force production. J Mot Behav.37(4):325-334, 2005.
68. Srimal R, Diedrichsen J, Ryklin EB, Curtis CE. Obligatory adaptation of saccade gains. J Neurophysiol.99(3):1554-1558, 2008.
69. Tirosh E, Perets-Dubrovsky S, Davidovitch M, Hocherman S. Visuomotor tracking related to attention-deficit hyperactivity disorder (ADHD). J Child Neurol.21(6):503-507, 2006.
70. Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST. Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol.90(6):3958-3966, 2003.
71. Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM. Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol.80(4):2162-2176, 1998.
72. Vercher JL, Lazzari S, Gauthier G. Manuo-ocular coordination in target tracking. II. Comparing the model with human behavior. Biol Cybern.77(4):267-275, 1997.
73. Vercher JL, Quaccia D, Gauthier GM. Oculo-manual coordination control: respective role of visual and non-visual information in ocular tracking of self-moved targets. Exp Brain Res.103(2):311-322, 1995.
74. Vidoni ED, McCarley JS, Edwards JD, Boyd LA. Manual and oculomotor performance develop contemporaneously but independently during continuous tracking. Exp Brain Res.195(4):611-620, 2009.
75. Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol.80(5):2405-2416, 1998.
76. Waterston JA, Barnes GR, Grealy MA. A quantitative study of eye and head movements during smooth pursuit in patients with cerebellar disease. Brain.115 ( Pt 5):1343-1358, 1992.
77. Wickens CD. Engineering psychology and human performance. 2nd ed. HarperCollins: New York, 1984.
78. Wilmut K, Wann JP, Brown JH. How active gaze informs the hand in sequential pointing movements. Exp Brain Res.175(4):654-666, 2006.
79. Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science.269(5232):1880-1882, 1995.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw