進階搜尋


 
系統識別號 U0026-1708201018473600
論文名稱(中文) 以非侵入光電式方法量測腦缺血大鼠腦部之神經血管連結
論文名稱(英文) Noninvasive Optoelectrical Assessment of Neurovascular Coupling in Rat with Cerebral Ischemia
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 陸致遠
研究生(英文) Chih-Yuan Lu
學號 p8697118
學位類別 碩士
語文別 英文
論文頁數 42頁
口試委員 指導教授-陳家進
口試委員-陳天送
口試委員-黃英修
口試委員-葉秩光
口試委員-羅伯特.瑞傑
中文關鍵字 缺血性中風  神經血管連結  體感覺誘發電位  事件相關光訊號  時頻分析  近紅外光雷射治療 
英文關鍵字 ischemic stroke  neurovascular coupling  somatosensory evoked potentials  event-related optical signals  time frequency analysis  near infrared laser therapy 
學科別分類
中文摘要 缺血性中風已經成為造成成年人死亡與失能的主要原因。近來研究指出近紅外光雷射治療、幹細胞與生長因子可以成為治療中風的新方式。近期研究也證實腦部的神經血管連結會在中風後與接受治療後產生功能性的變化。在許多評估缺血性中風的治療成效的方法中,量化腦神經血管的功能性連結提供了一在中風的急性期與慢性期作連續偵測的方式。與其他的評估方法比較,非侵入式的評估方式較適合用在時間連續偵測的實驗上。這個研究的目標為發展一套可以從體表同時評估體感覺誘發電位與事件相關的光訊號之量測系統。我們設計了一個可以放置在老鼠頭上的探頭,並以動物實驗確定其可以從大鼠的頭皮表面量測到體感覺誘發電位的訊號,同時這個探頭也用來支撐近紅外光血氧儀的光纖。這個探頭應用了彈簧探針來符合大鼠的頭蓋骨形狀,並收取大腦半球兩個不同區域的電訊號作差動放大來獲得體感覺誘發電位。在系統驗證的階段,我們成功的以非侵入式的方法量測到體感覺誘發電位與總頸動脈栓塞手術時的血液動力學變化。在使用氣麻isoflurane誘導麻醉後,整個量測過程皆在使用α-chloralose麻醉下完成。在體感覺電位誘發下,腦部微血管的活動也同時被記錄。我們的結果顯示了在缺血性中風發生的同時,電訊號與光訊號都有峰值大幅減少的狀況與型態上的變化,電訊號的時頻分析觀察到在缺血狀態下記錄到的誘發電位訊號頻率有向高頻分布的趨勢。此一非侵入式的評估系統提供了一個新的方法來評估如近紅外光雷射治療與幹細胞治療應用於缺血性中風之大鼠模型。
英文摘要 Ischemic stroke is a leading cause of adult disability and mortality in modern society. Recently studies have proposed new strategies such as near infrared laser therapy (NILT) and other novel treatments including stem cells and growth factors for treatment of ischemic stroke. Among various evaluation techniques, neurovascular coupling represents the functional connection between neuron and cerebral capillary which has been recently proposed assessment tool for ischemic stroke or brain injury. Compared to other approaches, a non-invasive approach of assessing the neurovascular coupling is necessary to directly evaluate the time-course treatment effect. This aims of this study are to establish the noninvasive approach to record the somatosensory evoked potentials (SSEPs) and cerebovascular response using near infrared spectroscopy (NIRS). A cranial probe was designed to record SSEPs and event-related optical signals (EROS) non-invasively. The differential inputs of recording probes with spring were used which can fit the brain skull well and record the differences between two hemispheres The recording of SSEPs was under anesthesia with α-chloralose (50mg/kg) during forepaw stimulation. Our results of SSEPs show decayed P1-N1 amplitude and frequency shifted in time frequency analysis (TFA) after cerebral ischemia. The EROS results recorded using frequency domain (FD) NIRS indicate the peak decayed in hemodynamic response. This study provides a noninvasive approach for evaluating neurovascular coupling in normal and also ischemic animal model. This noninvasive recording of SSEP and EROS would provide an essential tool for time-course monitoring of various novel treatments including LLLT and stem cell treatments to the animal of ischemic stroke.
論文目次 Chinese Abstract..........................................i
Abstract.................................................ii
誌謝.....................................................iv
Content...................................................v
List of tables...........................................vii
List of figures.........................................viii


Chapter 1 Introduction 1
1.1 Pathophysiology of brain ischemia and concept of penumbra 1
1.2 Non-invasive brain activity measurements 3
1.3 Neurovascular coupling (NVC) 3
1.4 Somatosensory evoked potentials (SSEPs) and event-related optical signals (EROS) 5
1.5 The aims of this study 8
Chapter 2 Materials and Methods 10
2.1 Non invasive recording system for measuring neurovascular coupling 10
2.2 Ischemic stroke animal model 12
2.2.1 Transient meddle cerebral artery occlusion (MCAO) operation 13
2.3 Non invasive approach to neurovascular coupling 14
2.3.1 Measurement of SSEPs 14
2.3.2 Measurement of NVC 15
2.4 Data analysis 16
2.4.1 SSEPs 16
2.4.2 Event related optical signals (EROS) 18
Chapter 3 Results 19
3.1 Cortical electrodes for detection of SSEPs 19
3.1.1 Importance of grounding in recording of SSEPs 19
3.1.2 SSEP recording using invasive cortical electrodes 20
3.1.3 Ischemia pattern of SSEPs and time-frequency analysis 23
3.2 Non-invasive measurement of SSEPs 26
3.2.1 Scalp EEG and surface somatosensory evoked potentials 26
3.2.2 Surface probe recording of SSEPs 26
3.3 Event related optical signals (EROS) 29
3.3.1 Responses of neurovascular coupling 30
Chapter 4 Discussion and Conclusion 33
4.1 Finding in our previous work 33
4.2 Advantages of our current system arrangement 34
4.3 Improvement of our system in future work 34
4.4 Conclusions and future development 34
References 36

參考文獻 E. M. Assia, M. Rosner and M. Belkin. Temporal parameters of low-energy laser irradiation for optimal delay of post-traumatic degeneration of optic nerve. Brain Res. 476:205-212, 1989.
J. Astrup and L.Symon. Threshold in cerebral ischemia: the ischemic penumbra. Stroke. 12:723-725, 1981.
L. Belayev, O. F. Alonso, R. Busto, W. Z. Zhao and M. D. Ginsberg. Middle cerebral artery occlusion in the rat by intraluminal suture - neurological and pathological evaluation of an improved model. Stroke. 27:1616-1622, 1996.
M. Bundo, S. Inao, A. Nakamura, T. Kato, K. Ito, M. Tadokoro, R. Kabeya, T. Sugimoto, Y. Kajita, and J. Yoshida. Changes of neural activity correlate with the severity of cortical ischemia in patients with unilateral major cerebral artery occlusion. Stroke. 33: 61-66, 2002.
K. D. Desmet, D. A. Paz, J. J. Corry, J. T. Eells, M. T. Wong-Riley, M. M. Henry, E. V. Buchmann, M. P. Connelly, J. V. Dovi, H. L. Liang, D. S. Henshel, R. L. Yeager, D. S. Millsap, J. Lim, L. J. Gould, R. Das, M. Jett, B. D. Hodgson, D. Margolis and H. T. Whelan. Clinical and experimental applications of NIR-LED Photobiomodulation. Photomed Laser Surg. 24:121-128, 2006.
A. Devor, I. Ulbert, A. K. Dunn, S. Naratanan, S. R. Jones, M. L. Andermann, D. A. Boas and A.M. Dale. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. PNAS. 10:3822-3827, 2004.
U. Dirnagl, C. Iadecola and M. A. Moskowitz. Pathobiology of ischemic stroke an integrated review. Trends Neurosci. 22:391-397, 1999.
H. Girouard and C. Iadecola. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 100:328-335, 2006.
G. R. Gordon, S. J. Mulligan and B. A. MacVicar. Astrocyte control of the cerebrovasculature. Glia. 55:1214-21, 2007.
G. Gratton, M. Goodman-Wood and M. Fabiani. Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study. Hum. Brain Mapp. 13:13-25, 2001.
R. Hata, G. Mies, C. Wiessner and K. A. Hossmann. Differential expression of c-fos and hsp72 mRNA in focal cerebral ischemia of mice. Neuroreport 9:27-32, 1998.
K. A. Hossmann, Cerebral ischemia Models, methods and outcomes. Neuropharmacology. 55:257-270, 2008.
C. Iadecola, F. Zhang and X. Xu. Inhibition of inducible nitric oxide synthase ameliorates ischemic damage. Am. J. Physiol. 268:286-292, 1995.
S. Kawamura, N. Yasui, M. Shirasawa and H. Fukasawa, Rat middle cerebral artery occlusion using an intraluminal thread technique. Acta Neurochirurgica 109:126-132, 1991.
K. Kohno, T. Back, M. Hoehn-Berlage and K. A. Hossmann. A modified rat model of middle cerebral artery thread occlusion under electrophysiological control for magnetic resonance investigations. Magnetic Resonance Imaging 13:65-71, 1995.
J. Koizumi, Y. Yoshida, T. Nakazawa and G. Ooneda. Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Japanese Journal of Stroke. 8:1-8, 1986.
L. Leybaert. Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? Cerebral Blood Flow & Metabolism. 25:2-16, 2005.
E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani and G. Gratton. The event-related optical signal to electrical stimulation of the median nerve. NeuroImage. 21:1798-1804, 2004.
P. Mergenthaler, U. Dirnagl and A. Meisel. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis. 19:151-67, 2004.
R. C. Mesquita, T. J. Huppert and D. A. Boas. Exploring neuro-vascular and neuro-metabolic coupling in rat somatosensory cortex. Phys. Med. Biol. 54:175-185, 2009.
P. Poon, R. C. Koehler and N. V. Thakor. Rapid measurement of somatosensory evoked potential response to cerebral artery occlusion. Med. & Biol. Eng. & Comput. 33:396-402, 1995.
J. C. Rojas, J. Lee, J. M. John and F. Gonzalez-Lima Neuroprotective effects of near infrared light in an in-vivo model of mitochondrial optic neuropathy Neuroscience. 28:13511-13521, 2008.
P. Rolfe. In vivo near-infrared spectroscopy. Annu Rev Biomed Eng. 2:715-754, 2000.
L. Rovati, G. Salvatori, L. Bulf and S. Fonda. Recording of neural activity evoked by graded contrast visual stimulus. Biomed Eng. Online. 2007;6:28, 2008.
A. B. Singhal and E. H. Lo. Advances in Emerging Nondrug Therapies for Acute Stroke. Stroke, 39:289-291, 2008.
G. M. Sommers, J. V. Egmond, L. Booij and H. D. J. Heerschap. A Isoflurane anesthesia is a valuable alternative for a-chloralose anesthesia in the forepaw stimulation model in rats. NMR in biomedicine. 22:414-418, 2008.
J. Streeter, L. De Taboada and U. Oron. Mechanisms of action of light therapy for stroke and acute myocardial infarction. Mitochondrion. 4: 569-576, 2004.
Y. Watanabe, H. Takagi, S. Aoki and H. Sassa. Prediction of cerebral infarct sizes by cerebral blood flow SPECT performed in the early acute stage. Annals of Nuclear Medicine. 13:205-210, 1999.
H. T. Whelan, R. L. Smits, E. V. Buchmann, E. V. Buchman, N. T. Whelan, S. G. Turner, D. A. Margolis, V. Cevenini, H. Stinson, R. Ignatius, T. Martin, J. Cwiklinski, A. F. Philippi, W. R. Graf, B. Hodgson, L. Gould, M. Kanea, G. Chen, and J.Caviness. Effects of NASA light-emitting diode irradiation on wound healing. J.Clin. Laser Med. Surg. 19:305–314, 2001.
W. Yu, J. O. Naim and R. J. Lanzafame. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. J. Clin. Laser Med. Surg. 20:55–63, 1997.
M. Zeleli and J. Schramm. Motor versus somatosensory evoked potential changes after acute experimental spinal cord injury in rats Acta Neurochir (Wien). 108:140-147, 1991.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw