進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1707202013031500
論文名稱(中文) 編織竹蓆強化聚丙烯複合材料特性研究
論文名稱(英文) Study on Woven Bamboo Fiber Mat Reinforced Polypropylene Composite
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 108
學期 2
出版年 109
研究生(中文) 王柏鈞
研究生(英文) Bo-Jyun Wang
學號 P46074228
學位類別 碩士
語文別 中文
論文頁數 125頁
口試委員 指導教授-楊文彬
口試委員-胡潛濱
口試委員-陳介力
中文關鍵字 竹纖維  竹蓆複合材料  鹼處理  濕熱老化  竹蓆預型 
英文關鍵字 bamboo fiber  bamboo fiber mat composite  alkali treatment  hygrothermal aging  bamboo mat preform 
學科別分類
中文摘要 本研究主要是製備竹蓆/聚丙烯複合材料,並了解此複合材料的機械性質。內容分為三個部分。第一個部分為量測竹條的基本性質,檢視竹條在鹼處理前後的強度變化。第二部分為竹蓆/聚丙烯複合材料的製備,及機械性質量測。比較的控制便因分別為:鹼處理、竹蓆型式、竹蓆層數、及濕熱老化的影響。第三部分為竹席預型製作與含水量的關係研究。首先,使用機械法得到竹條,並利用手工的方式,編成平織竹蓆(Plain weave)與斜紋編織(Twill weave)竹蓆,再利用真空加壓成型法,與聚丙烯膜製成竹蓆複合材料。實驗結果顯示,竹條經鹼處理後,截面積會下降,密度會上升,其強度約為400MPa。在竹蓆複合材料方面,鹼處理後的竹蓆,會提升複合材料的強度。平織竹蓆複合材料軸向與側向機械性質相近。斜紋編織竹蓆複合材料的機械性質,比平織竹蓆複合材料好,而且竹蓆纖維間縫隙較小,能防止局部樹脂過多。斜紋編織竹蓆複合材料,在使用2層或4層竹蓆狀況下,其機械性質相近。竹蓆複合材料經濕熱老化實驗,因為竹蓆易吸濕會對機械性質造成不良的影響。在竹蓆預型方面,定型的關鍵在於竹蓆的溼度,而非加熱時間的長短,水可以使竹子軟化,增加移動空間使竹子塑形,最後,竹蓆可以製成複雜幾何形狀,代表竹蓆的可塑性是很大的。
英文摘要 The aim of this study was to understand the effects on the mechanical properties of bamboo fiber mat (BM) reinforced polypropylene (PP) composites by different types of bamboo fiber mat and alkali treatment. The bamboo fiber mat was constructed manually by hand. The BM/PP composites were fabricated by thermoforming process. The basic characteristics of the bamboo strips, such as density, cross section, and tensile properties were measured first. The strength of the bamboo strip was tested, and it was around 400MPa after 5wt% alkali treatment. The alkali treated BM/PP composite had better tensile strength than untreated BM/PP composite. The alkali treated twill BM/PP composites has 2 times strength and modulus than alkali treated plain BM/PP composites in longitudinal orientation, while the strength is not much difference in the transverse direction. For the hygrothermal aging test, the composites had been highly sensitive to moisture, which could degrade the composites mechanical properties. In the bamboo fiber mat preforming process, moisture can enhance the plasticity of the bamboo mat and prevent bamboo fiber mat form spring back after forming. The preforming results implied that the woven bamboo fiber mat has the potential to form a bamboo fiber preform with complex geometry.
論文目次 中文摘要............................................................................................................I
ABSTRACT..................................................................................................... II
誌謝..................................................................................................................X
目錄.................................................................................................................XI
表目錄..........................................................................................................XIV
圖目錄...........................................................................................................XV
第一章、緒論.................................................................................................1
1-1 前言..................................................................................................1
1-2 研究目的..........................................................................................2
1-3 研究方法..........................................................................................3
1-4 文獻回顧..........................................................................................7
1-4-1 單根竹纖維相關文獻........................................................... 7
1-4-2 竹纖維複合材料相關文獻................................................... 8
1-4-3 竹纖維複合材料熱降解相關文獻.....................................10
1-4-4 竹纖維彎曲預型相關文獻.................................................10
第二章、研究簡介.......................................................................................12
2-1 刺竹介紹........................................................................................12
2-2 竹細胞結構介紹............................................................................12
2-3 熱固性塑膠介紹............................................................................15
2-4 熱塑性塑膠介紹............................................................................16
2-5 聚丙烯介紹....................................................................................17
2-6 真空加壓成形法介紹....................................................................18
2-7 竹纖維萃取介紹............................................................................19
2-8 材料性質測試................................................................................21
2-9 複合材料力學原理介紹[43].........................................................22
第三章、研究規劃與製程設計...................................................................25
3-1 實驗材料........................................................................................25
3-2 實驗模具........................................................................................30
3-3 實驗設備........................................................................................38
3-4 竹纖維製造與量測........................................................................48
3-4-1 竹條製造.............................................................................48
3-4-2 竹條鹼處理.........................................................................49
3-4-3 竹條性質量測.....................................................................50
3-5 竹蓆製作........................................................................................51
3-5-1 平織竹蓆製作.....................................................................51
3-5-2 斜紋編織竹蓆製作.............................................................52
3-6 竹蓆複合材料製造與量測............................................................53
3-6-1 竹蓆複合材料製程.............................................................53
3-6-2 竹蓆複合材料拉伸與彎曲試片製作.................................60
3-6-3 竹蓆複合材料拉伸試驗.....................................................61
3-6-4 竹蓆複合材料彎曲試驗.....................................................61
3-7 竹蓆預型製造與量測....................................................................63
3-7-1 竹蓆預型製程(曲面)...........................................................63
3-7-2 竹蓆預型製程(球面)...........................................................63
3-8 濕熱老化測試................................................................................67
第四章、實驗結果與討論...........................................................................68
4-1 竹條物理與機械性質量測結果....................................................68
4-1-1 竹條物理性質.....................................................................68
4-1-2 竹條拉伸性質.....................................................................69
4-2 竹蓆複合材料拉伸量測結果........................................................71
4-2-1 複合材料無處理和鹼處理下拉伸結果.............................71
4-2-2 不同竹蓆型式複合材料之拉伸結果.................................73
4-2-3 複合材料軸向與側向彎曲測試結果.................................78
4-3 竹蓆預型量測量測結果................................................................80
4-3-1 斜紋編織竹蓆曲面預型成品.............................................80
4-3-2 竹蓆球面預型成品.............................................................82
4-4 FIB拍攝結果................................................................................85
4-5 濕熱老化測試結果........................................................................87
第五章、結論與展望...................................................................................90
5-1 結論................................................................................................90
5-2 未來展望........................................................................................91
參考文獻.........................................................................................................93
附錄.................................................................................................................97
參考文獻 [1] 許明發,郭文雄,複合材料入門,中華民國尖端材料科技協會,2005.
[2] 郭文雄,許明發,熱塑性複合材料,黎明書店,2004.
[3] Liu Q, Stuart T, Hughes M, Sharma HSS, and Lyons G, Structural biocomposites from flax–Part II: The use of PEG and PVA as interfacial compatibilising agents. Composites Part A: Applied Science and Manufacturing, 38(5), pp.1403-1413, 2007.
[4] Hobson J, and Carus M, Targets for bio-based composites and natural fibres. JEC composites, (63),pp. 31-32, 2011.
[5] Yan L, Chouw N, and Jayaraman K, Flax fibre and its composites–A review. Composites Part B: Engineering, 56, pp.296-317, 2014.
[6] Mansur MA, and Aziz MA, A study of jute fibre reinforced cement composites. International Journal of Cement Composites and Lightweight Concrete, 4(2), pp.75-82, 1982.
[7] Chakraborty S, Kundu SP, RoyA,Adhikari B, andMajumder SB, Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Construction and Building Materials, 49, pp.214-222, 2013.
[8] Islam SM, Hussain RR, and Morshed MAZ, Fiber-reinforced concrete incorporating locally available natural fibers in normal-and high-strength concrete and a performance analysis with steel fiber-reinforced composite concrete. Journal of composite materials, 46(1), pp.111-122, 2012.
[9] Ramires EC, Megiatto JDJ, Gardrat C, Castellan A, Frollini E, Biobased composites from glyoxal–phenolic resins and sisal fibers, Bioresource Technol, 101, pp. 1998–2006, 2010.
[10] Reddy, N, Yang, Y, Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource technology, 100(14), pp. 3563-3569, 2009.
[11] Li X, Li Y, Zhong Z, Wang D, Ratto JA, Sheng K, Sun XS, Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Bioresource technology, 100(14), pp. 3556-3562, 2009.
[12] Jain S, Kumar R, Jindal UC, Mechanical behaviour of bamboo and bamboo composite. Journal of Materials Science, 27(17), pp. 4598-4604, 1992.
[13] Das M, Chakraborty D, Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. Journal of applied polymer science, 107(1), pp. 522-527, 2008.
[14] Thwe MM, Liao K, Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites science and technology, 63(3-4),
94
pp.375-387, 2003.
[15] Karmaker AC, Effect of water absorption on dimensional stability and impact energy of jute fibre reinforced polypropylene. Journal of materials science letters, 16(6), pp.462-464, 1997.
[16] Mbakop RS, Lebrun G, Brouillette F, Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers. Composites Part A: Applied Science and Manufacturing, 109, pp.604-614, 2018.
[17] Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H, Fiber texture and mechanical graded structure of bamboo. Composites Part B: Engineering, 28(1-2), pp.13-20, 1997.
[18] Osorio L, Trujillo E, A. Van VuureAW, Verpoest I, Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. Journal of reinforced plastics and composites, 30(5),pp. 396-408, 2011.
[19] Ochi S, Tensile properties of bamboo fiber reinforced biodegradable plastics. International Journal of Composite Materials, 2(1), pp.1-4, 2012.
[20] Takagi H, Ichihara Y, Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME International Journal Series A Solid Mechanics and Material Engineering, 47(4), pp.551-555, 2004.
[21] Zuhudi NM, Jayaraman K, Lin RTJ, Mechanical, thermal and instrumented impact properties of bamboo fabric-reinforced polypropylene composites. Polymers and Polymer Composites, 24(9), pp.755-766, 2016.
[22] Sukmawan R, Takagi H, Nakagaito AN, Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Composites Part B: Engineering, 84, pp.9-16, 2016.
[23] Thwe MM, Liao K, Environmental effects on bamboo-glass/polypropylene hybrid composites. Journal of Materials Science, 38(2), pp.363-376, 2003.
[24] Bledzki AK, Reihmane S, Gassan J, Properties and modification methods for vegetable fibers for natural fiber composites. Journal of applied polymer science, 59(8), pp.1329-1336, 1996.
[25] Kelen T, Polymer degradation. New York: Van Nostrand Reinhold Company; 1983.
[26] NJ. Mills, Plastics microstructure, properties and application. London: Edward Arnold Ltd; 1986
[27] Rambo CR, Martinelli JR, Synthesis and characterization of SiC from bamboo. In Key Engineering Materials, Vol. 189, pp. 9-15, 2001.
[28] 郝睿敏,刘文金,竹片弯曲加工工艺技术探讨,家具与室内装饰, 4:p.28-29,2014.
[29] Gao L, Guo W, Luo S, Investigation of changes in compressed moso bamboo (Phyllostachys pubescens) after hot-press molding. Journal of wood science, 64(5), pp.557-565, 2018.
[30] 王子定,郭寶章,臺灣之竹林與竹材,臺灣銀行經濟研究室編,出版項 臺北市: 臺灣銀行,1951.
[31] 羅永富. 台灣大百科全書-竹種類,http://nrch.culture.tw/twpedia.aspx?id=13482
[32] 馬振基,高分子複合材料: 下册(修訂本),國立編譯館出版,2009.
[33] 高木謙行,佐佐木平三,聚丙烯樹脂PP原理與實用,復漢出版社,1985.
[34] 聚石化學.聚丙烯有哪些優缺點?,http://www.polyrocks.com/Article/FAQ_2018_9_28_1.html
[35] Chen G, Luo H, Yang H, Zhang T, Li S, Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo. Acta biomaterialia, 65, pp.203-215, 2018.
[36] Habibi MK, Lu Y, Crack propagation in bamboo's hierarchical cellular structure. Scientific reports, 4(1), pp.1-7, 2014.
[37] 吳順昭,王秀華,台灣竹才知構造研究,臺灣大學農學院森林學系,1976.
[38] Crawford RL, Lignin biodegradation and transformation. New York: John Wiley and Sons. 1981.
[39] John MJ, Thomas S, Biofibres and biocomposites. Carbohydrate polymers, 71(3), pp.343-364, 2008.
[40] Zakikhani P, Zahari R, SultanMTH, Majid DL, Extraction and preparation of bamboo fibre-reinforced composites. Materials & Design, 63, pp.820-828, 2014.
[41] Deshpande AP, Bhaskar RaoM, Lakshmana Rao C, Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of applied polymer science, 76(1), pp.83-92, 2000.
[42] John MJ, Anandjiwala RD, Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polymer composites, 29(2), pp.187-207, 2008.
[43] Gibson RF, Principles of composite material mechanics: CRC press, 2016.
[44] 邱宣豪,連續竹纖維預型與竹纖維複合材料研究,碩士論文,2019,航空太空研究所,國立成功大學.
[45] 周紫濃,竹纖維拉伸強度之研究,碩士論文,2015,航空太空研究所,國立成功大學.
[46] 黃俊凱,長纖竹纖維增強環氧樹脂複合材料製備及特性研究,碩士論文,2018,航空太空研究所,國立成功大學.
[47] Samal SK, Mohanty S, Nayak SK, Polypropylene—bamboo/glass fiber hybrid composites: fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. Journal of Reinforced Plastics and Composites, 28(22), pp.2729-2747, 2009.
[48] Okubo K, Fujii T, Yamamoto Y, Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied science and manufacturing, 35(3), pp.377-383, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw