進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1707201816354300
論文名稱(中文) 電漿輔助沉積類石墨烯牆奈米碳於奈米矽片之研究
論文名稱(英文) Plasma Assisted Deposition of Graphene-Nanowall-Like Nano-Carbon on Silicon Nano-Flakes
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 106
學期 2
出版年 107
研究生(中文) 黃閔祥
研究生(英文) Min-Siang Huang
學號 Q16054231
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-曾永華
口試委員-李文熙
口試委員-朱聖緣
口試委員-江孟學
口試委員-盧達生
中文關鍵字 奈米矽片  石墨烯牆奈米碳  鑽石  碳黑 
英文關鍵字 Si nanoflakes  Graphene-nanowall-like nano-carbon  Nanodiamonds  Carbon black 
學科別分類
中文摘要 本研究專注探討鋰離子電池陽極材料,目前商業化鋰離子電池陽極材料為石墨,石墨陽極於長時間充放電後不會有枝晶鋰產生,使其在應用上具有安全性與生命週期長優勢,但石墨陽極的理論電容值(theoretical capacitance)約為372 mAhg-1,故許多研究專注於找尋更高理論電容值之材料取代石墨。以矽材料作為鋰離子電池陽極材料,因其理論電容值約為4200 mAhg-1,遠高於石墨陽極之理論電容值且矽具無毒性與儲量豐富,但矽陽極於充放電過程中具有大體積膨脹率(體積膨脹率約為 400%)使矽陽極粉碎導致儲電電容量快速下降。目前文獻中改善矽陽極方法有(1)矽奈米結構 (2)多孔矽結構與(3)矽-碳複合結構,本研究專注於探討以電漿輔助沉積類石墨烯牆奈米碳包覆奈米矽片之複合結構。
本研究使用奈米矽片(Si flake)作為鋰離子電池陽極材料,並搭配微波電漿輔助化學氣相沉積系統(Microwave Plasma-Enhanced Chemical Vapor Deposition, MPECVD )進行類石墨烯牆奈米碳備製,使用氬氣、氫氣、氮氣與甲烷混合氣體激發電漿與奈米矽片作用,氬氣係一載流氣體協助製程氣體導入亦可幫助甲烷氣體解離C-C二聚體自由基幫助類石墨烯牆奈米碳成長,氫氣可作為清潔氣體,清除奈米矽片表面之原生氧化層(Native Oxide layer),而甲烷則是製程中主要碳源,藉由解離出C-C二聚體自由基,成長類石墨烯牆奈米碳結構,此外,本研究係使用奈米鑽石與碳黑二種材料做為類石墨烯牆奈米碳成長之碳成核點,並分析此二種材料對於類石墨烯牆奈米碳-矽複合結構成長是否有所助益。
本研究使用分光光譜儀進行製程電漿組成分析,拉曼光譜儀與掃描式電子顯微鏡作為類石墨烯牆奈米碳分析,拉曼頻譜圖可藉由觀測D-band、G-band與2D-band三峰值強度大小判斷碳材料結構缺陷與層數;而電子顯微鏡則可直觀瞭解此材料結構型態。
英文摘要 As the development of lithium ion battery received much attention, more and more researchers focus on how to improve the capacity and increase the battery lifetime. Currently, graphite is a commercial anode material with theoretical capacitance about 372 mAhg-1. In this study, high specific capacity materials are emphasized in order to replace graphite as new anode materials. Silicon is considered to be the most promising anode candidate because its theoretical capacity is about 10 times of that for graphite. However, the use of silicon in lithium ion battery is a big challenge because of its high volume changes during lithiation and delithiation. It may result in the disconnection of silicon from the current collector causing premature termination of change storage capability. In order to overcome the challenges, the graphene-nanowall-like nano-carbon is coated on Si nanoflakes to increase the conductivity and connectivity among Si particles and enhance anode mechanical properties.
A microwave plasma-enhanced chemical vapor deposition (MPECVD) system is used to fabricate graphene nanowalls (GNWs). The processing gases include argon (Ar), hydrogen (H2), nitrogen (N2) and methane (CH4). Methane is highly diluted with Ar to increase the production and the flux of C2 radicals for enabling the growth of the GNWs. Hydrogen is used to remove the native oxide layer of the Si nanoflakes. Besides, the Si nanoflakes are seeded by nanodiamonds (NDs) or carbon black (CB), which can be nucleation sites for growing GNWs.
Optical emission spectroscopy (OES), Raman spectroscopy and scanning emission microscopy (SEM) are used to analyze Si nanoflakes after plasma treatments. OES is used to determine the species in the plasma for MPECVD. The D-band, G-band and 2D-band can be found in the Raman spectra, the Raman peak can be used to determine quality, defects and layer numbers of GNWs. SEM is used to observe Si nanoflakes after plasma treatments. SEM images can be observed that the wall-like graphene is coated onto the surfaces of Si nanoflakes.
論文目次 摘要……..…..……………..…………..…………..…………..…………..……………..………... I
Abstract……..………………..…………..…………..…………..…………..…………..………....II
Abstract extended……..………………..…………..…………..…………..…………..…..……..IV
誌謝……..………………..…………..…………..…………..…………..……………..………...XIV
目錄……..………………..…………..…………..…………..…………..……………..………...XVI
圖目錄……..………………..…………..…………..…………..…………..…………...…...... XVIII
表目錄……..………………..…………..…………..…………..…………..…………..………...XXI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 章節介紹 5
第二章 文獻回顧 6
2.1 矽陽極優勢與劣勢 6
2.2改善矽陽極電極體積膨脹效應 7
2.3 化學氣相沉積法(Chemical Vapor Deposition, CVD) 12
2.4拉曼光譜儀(Raman spectrometer) 17
2.5 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 18
第三章 實驗設計與設備介紹 20
3.1實驗藥品 20
3.2奈米矽片-碳黑粉末備製 21
3.3奈米矽片-奈米鑽石粉末備製 22
3.4奈米矽片-碳黑/矽基板 23
3.5類石墨烯牆奈米碳沉積於奈米矽片製備 24
3.6材料分析 26
第四章 結果與討論 31
4.1製程電漿頻譜分析 31
4.2 石墨烯奈米牆-奈米矽片分析 35
4.3石墨烯奈米牆-奈米矽片製程缺失 38
4.4奈米鑽石輔助石墨烯奈米牆成長於奈米矽片 43
4.5碳黑輔助石墨烯奈米牆成長於奈米矽片 50
4.6成長石墨烯奈米牆於奈米矽片-碳黑/矽晶圓 53
第五章 結論 56
第六章 未來展望 57
參考文獻 58

參考文獻 [1] M.Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van MierlobP. Van den Bossche, ”Critical Review of State of Health Estimation Methods of Li-Ion Batteries for Real Applications,” Renewable and Sustainable Energy Reviews, Vol. 56, pp. 572-587, 2016.
[2] Languang Lu, Xuebing Han, Jianqiu Li, Jianfeng Hua, Minggao Ouyang, “A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles,” Journal of Power Sources, Vol. 226, pp. 272-288, 2013.
[3] John B. Goodenough, KyuSung Park, “The Li-Ion Rechargeable Battery: APerspective,” Journal of the American Chemical Society, Vol. 135, pp. 1167-1176, 2013.
[4] P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, “High Rate Capabilities Fe3O4-Based Cu Nano-Architectured Electrodes for Lithium-Ion Battery Applications,” Nature Materials, Vol. 5, pp. 567-573, 2006.
[5] Akira Yoshino, “The Birth of the Lithium-Ion Battery,” Angewandte Essays, Vol. 51, pp. 2-5, 2012.
[6] https://www.stockfeel.com.tw/%E9%9B%BB%E5%8B%95%E8%BB%8A%E7%99%BC%E5%B1%95%E7%9A%84%E9%97%9C%E9%8D%B5%E5%9B%A0%E7%B4%A0-%E9%8B%B0%E9%9B%A2%E5%AD%90%E9%9B%BB%E6%B1%A0%EF %BC%8B%E5%85%85%E9%9B%BB%E7%AB%99/
[7] Anthony Barré, Benjamin Deguilhem, Sébastien Grolleau, Mathias Gérard, Frédéric Suard, DelphineRiu, “A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications,” Journal of Power Sources, Vol. 241, pp. 680-689, 2013.
[8] http://www.plugincars.com/lithium-ion-cell-prices-poised-big-plunge-says-navigant-128783.html
[9] Ning Wang, Tao Hang, Huiqin Ling, Anmin Hu, Ming Li, “High-Performance Si-Based 3D Cu Nanostructured Electrode Assembly for Rechargeable Lithium Batteries, “ Journal of Materials Chemistry A, Vol. 3, pp. 11912-11919, 2015.
[10] Xinghui Wang, Leimeng Sun, Rahmat Agung, Susantyoko, Qing Zhang, “A Hierarchical 3D Carbon Nanostructure for High Areal Capacity and Flexible Lithium Ion Batteries,” Carbon, Vol. 98, pp. 504-509, 2016.
[11] Zhengjiao Liu, Pengqian Guo, Boli Liu, Wenhe Xie, Dequan Liu, Deyan He, “Carbon-Coated Si Nanoparticles/Reduced Graphene Oxide Multilayer Anchored to Nanostructured Current Collector as Lithium-Ion Battery Anode,” Applied Surface Science, Vol. 396, pp. 41-47, 2017.
[12] Khalil Amine, Ryoji Kanno, Yonhua Tzeng, “Rechargeable Lithium Batteries and Beyond: Progress, Challenges, and Future Directions,” MRS Bulletin, Vol. 39, pp. 395-401, 2014.
[13] Kun Feng, Matthew Li, Wenwen Liu, Ali Ghorbani Kashkooli, Xingcheng Xiao, Mei Cai, Zhongwei Chen,” Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications,” Small, Vol. 14, 33 pages, 2018.
[14] A. F. Gonzalez, N. H. Yang, and R. S. Liu, “Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives,” The Journal of Physical Chemistry C, Vol. 50, pp. 27775–27787, 2017.
[15] Jaegeon Ryu, Dongki Hong, Hyun-Wook Lee, Soojin Park, “Practical Considerations of Si-Based Anodes for Lithiumion Battery Applications,” Nano Research, Vol. 10, pp. 3970-4002, 2017.
[16] Feixiang Wu, Gleb Yushin, “Conversion Cathodes for Rechargeable Lithium and Lithium-Ion Batteries,” Energy & Environmental Science, Vol. 10, pp. 435-459, 2017.
[17] Mark Verbrugge, Yang-Tse Cheng,” Stress Distribution within Spherical Particles Undergoing Electrochemical Insertion and Extraction,” ECS Transactions, Vol. 16, pp. 127-139, 2008.
[18] Mark W. Verbrugge, Yang-Tse Cheng, “Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations,” Journal of the Electrochemical Society, Vol. 156, pp. A927-A937, 2009.
[19] Yang-Tse Cheng, Mark W. Verbrugge, “The Influence of Surface Mechanics on Diffusion Induced Stresses within Spherical Nanoparticles,” Journal of Applied Physics, Vol. 104, pp. 083521-1 - 083521-6, 2008.
[20] Rutooj Deshpande, Yang-Tse Cheng, Mark W. Verbrugge, “Modeling Diffusion-Induced Stress in Nanowire Electrode Structures,” Journal of Power Sources, Vol. 195, pp. 5081-5088, August 2010.
[21] Xin Su, Qingliu Wu, Juchuan Li, Xingcheng Xiao, Amber Lott, Wenquan Lu, Brian W. Sheldon, Ji Wu,” Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review,” Advanced Energy Materials, Vol. 4, 23 pages, 2013.
[22] Tae Hoon Hwang, Yong Min Lee, Byung-Seon Kong, Jin-Seok Seo, Jang Wook Choi,” Electrospun Core−Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes,” Nano Letters, Vol. 12, pp. 802-807, 2012.
[23] M. Ge, J. Rong, X. Fang, and C. Zhou, “Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life, ” Nano Letters, Vol. 12, pp. 2318-2323, 2012.
[24] Huihua Zhang, Xinhai Li, Huajun Guo, Zhixing Wang, Yu Zhou, “Hollow Si/C Composite as Anode Material for High Performance Lithium-Ion Battery,” Powder Technology, Vol. 299, pp. 178-184, 2016.
[25] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McILWRATH, Xiao Feng Zhang, Robert A. Huggins, Yi Cui,” High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nature Nanotechnology, Vol. 3, pp. 31-35,2008.
[26] Taeseup Song, Jianliang Xia, Jin-Hyon Lee, Dong Hyun Lee, Moon-Seok Kwon, Jae-Man Choi, Jian Wu, Seok Kwang Doo, Hyuk Chang, Won Il Park, Dong Sik Zang, Hansu Kim, Yonggang Huang, Keh-Chih Hwang, John A. Rogers, Ungyu Paik,” Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries,”Nano Letters, Vol. 10, pp. 1710-1716, 2010.
[27] Hyunjung Kim, Byunghee Han, Jaebum Choo, Jaephil Cho,” Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries,” Angewandte Chemie, Vol. 120, pp. 10305-10308, 2008.
[28] T. Ikonen, T. Nissinen, E. Pohjalainen, O. Sorsa, T. Kallio, V.-P. Lehto,” Electrochemically Anodized Porous Silicon: Towards Simple and Affordable Anode Material for Li-Ion Batteries,” Scientific Reports, Vol. 7, pp. 1-7, 2017.
[29] Ying Jiang, Shi Chen, Daobin Mu, Borong Wu, Qi Liu, Zhikun Zhao, Feng Wu,” A Three-Dimensional Network Structure Si/C Anode for Li-Ion Batteries,” Energy Materials, Vol. 52, pp. 10950-10958, 2017.
[30] Chung-Hsuan Hsiao, Jarrn-Horng Lin, “Growth of A Superhydrophobic Multi-Walled Carbon Nanotube Forest on Quartz Using Flow-Vapor-Deposited Copper Catalysts,” Carbon, Vol. 124, 2017.
[31] Jianbin Zhou, Yang Lan, Kailong Zhang, Guoliang Xia, Jin Du, Yongchun Zhu, Yitai Qian,” In Situ Growth of Carbon Nanotube Wrapped Si Composites as Anodes for High Performance Lithium Ion Batteries,” Nanoscale, Vol. 8, pp. 4903-4907, 2016.
[32] Victor A. Krivchenko, Daniil M. Itkis, Stanislav A. Evlashin, Dmitry A. Semenenko, Eugene A. Goodilin, Alexander T. Rakhimov, Anton S. Stepanov, Nikolay V. Suetin, Andrey A. Pilevsky, Pavel V. Voronin,” Carbon Nanowalls Decorated with Silicon for Lithium-Ion Batteries,” Carbon, Vol. 50, pp. 1438-1442, 2012.
[33] K.L. Choy,” Chemical Vapour Deposition of Coatings,” Progress in Materials Science, Vol. 48, pp. 57-170, 2003.
[34] Kungen Teii, Masahiro Nakashima, “Synthesis and Field Emission Properties of Nanocrystalline Diamond/Carbon Nanowall Composite Films,” Applied Physics Letters, 3 pages, Vol. 96, 2010.
[35] C. Y. Cheng, M. Nakashima, K.Teii,” Low Threshold Field Emission from Nanocrystalline Diamond/Carbon Nanowall Composite Films,” Diamond and Related Materials, pp. 40-44, Vol. 27-28, 2012.
[36] Hua-Chao Tao, Li-Zhen Fan, Xuanhui Qu,” Facile Synthesis of Ordered Porous Si@C Nanorods as Anode Materials for Li-Ion Batteries,” Electrochimica Acta, Vol. 71, pp. 194-200, 2012.
[37] http://www.ndl.org.tw/docs/publication/20_3/pdf/F2.pdf
[38] Zhang Wei, Lyu Jilei, Lin Xiaoqi, Zhu Jinfeng, Man Weidong and Jiang Nan,” Synthesis of Diamond Nanoplatelets/Carbon Nanowalls on Graphite Substrate by MPCVD,” Plasma Science and Technology, pp. 579-582, Vol. 17, 2015.
[39] Zhipeng Wang, Mao Shoji, Keisuke Bab, Toshiyuki Ito, Hironori Ogata, “Microwave Plasma-Assisted Regeneration of Carbon Nanosheets with Bi- and Trilayer of Graphene and Their Application to Photovoltaic Cells,” Carbon, Vol. 67, pp. 326-335, 2014.
[40] In Hyuk Son, Jong Hwan Park, Seongyong Park, Kwangjin Park, Sangil Han, Jaeho Shin, Seok-Gwang Doo, Yunil Hwang, Hyuk Chang, Jang Wook Choi, “Graphene Balls for Lithium Rechargeable Batteries with Fast Charging and High Volumetric Energy Densities,” Nature Communication, Vol. 8, 11 pages,2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw