進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-1707201814385500
論文名稱(中文) 不同熱處理氣氛下對於銅銦鎵硒薄膜之燒結及其特性研究
論文名稱(英文) Different heat treatment effects on the microstructure and densification of CuIn0.7Ga0.3Se2 precursor films prepared by doctor blade technology
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 孫曼庭
研究生(英文) Man-Ting Sun
學號 N46054162
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 指導教授-向性一
口試委員-許志雄
口試委員-曾俊儒
中文關鍵字 銅銦鎵硒  奈米粉體  己硫醇  硒化  預燒結 
英文關鍵字 CuIn0.7Ga0.3Se2  nanoparticle  solution-base  1-hexanethiol  selenization  pre-sintering 
學科別分類
中文摘要 本研究探討使用直接升溫法合成黃銅礦結構之銅銦鎵硒 (CuIn0.7Ga0.3Se2) 奈米級粉體,經過配體交換技術將粉體表面吸附的有機分子碳鏈鏈長降低,以減少硒化後薄膜之殘碳量。利用低成本的刮刀法於玻璃基板上塗佈厚度約1 ~ 2 μm的CIGS前驅物薄膜,在80℃下聚合並乾燥後,藉由二階段之熱處理獲得最佳的CuIn0.7Ga0.3Se2薄膜。此二階段之熱處理分別為:(1) 試片首先在500℃的2 bar高壓N2氣氛下進行預燒結1小時,以提高前驅物薄膜的緻密性;(2) 置於石墨盒中以硒粉提供硒蒸氣在N2氣氛於500℃ 進行硒化,以促進晶粒成長。研究顯示利用高壓氣氛預燒結可改善薄膜與基板之間的束縛燒結行為,有效降低基板對薄膜的張應力影響,大幅降低薄膜的破裂程度,並獲得高均勻性、高密度及低孔隙率之CIGS前驅物。而硒化熱處理方面主要藉由改變硒粉重量、改變石墨盒外界氣壓,此兩變因互相搭配觀察其顯微結構及晶粒成長影響。根據SEM結果顯示,CIGS前驅物經過兩階段熱處理的試片明顯具有良好結晶性及微結構,且藉由AFM量測可知其擁有較低的粗糙度。利用霍爾效應分析量測,在硒化條件為500℃ - N2 1, 2 bar - 15 min時,可獲得優異電性的p型半導體之CIGS吸收層,其1 bar條件之載子濃度為1.23×1018 cm-3、飄移速率為11.4 cm2 V-1 s-1與電阻率為0.44 Ω-cm;則2 bar條件之載子濃度為6.00×1016 cm-3、遷移率16.0 cm2 V-1 s-1與電阻率為6.51 Ω-cm。利用可見光分光光譜儀量測其CIGS能隙值落為1.17 eV,於合理範圍內。利用光響應量測觀察CIGS薄膜在光、暗環境的瞬間響應情形。CIGS太陽能電池元件則使用兩階段熱處理之較佳製程參數製備,其元件構造由下而上為SLG / Mo / CIGS / CdS / i-ZnO / TCO(ZnO:Al) / Ag grid,於光強度AM1.5的照射下,獲得最高光電轉換效率1.28%。
英文摘要 The chalcopyrite structure of CuIn0.7Ga0.3Se2 (CIGS) nanoparticle-crystallites were synthesized by heating-up process. Then ligands exchange technology was used to reduce the residual carbon on the surface of CIGS particles. The nanoparticles-based ink consisted of 1-hexanethiol as solvent and 3 wt% of acylic acid as binder. CIGS thin films with a thickness of about 1~2 μm were coated on the Mo/SLG substrate by using a low-cost doctor blade method. In this study, it was found that using a larger external pressure during selenization process can promote CIGS nanocrystallites grain growth. The two-stage heat treatment was used to densify and promote the grain growth: (1) CIGS films were pre-sintered at 500°C under a high-pressure nitrogen atmosphere to promote the densification by conquering the constraint tensile stress generated from the Mo/SLG substrate and (2) then were selenized in a graphite box with selenium vapor at 500°C to promote the grain growth. The result showed that CIGS films with dense crystal grains and uniform microstructure can be obtained by using a two-stage heat treatment. The material properties of the sintered CIGS films were investigated by XRD, SEM, EDX, AFM, UV-Vis-NIR, Raman spectroscopy, Hall effect analysis, Photo-response. A p-type CIGS film prepared by two-stage heat treatment had good electrical properties with the hole concentration of 1.23×1018 cm-3, the mobility of 11.4 cm2 V-1 s-1, and the resistivity of 0.44 Ω-cm. The structure of the CIGS solar cell was SLG / Mo / CIGS / CdS / i-ZnO / TCO (ZnO: Al) / Ag grid from bottom to top. The maximum photoelectric conversion efficiency was 1.28% under the illumination of AM1.5.
論文目次 摘要 I
Extended Abstract II
致謝 X
目錄 XII
圖目錄 XV
表目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的與方法 2
第二章 文獻回顧 7
2-1 銅銦鎵硒(CIGS)薄膜太陽能電池基本構造 7
2-2 銅銦鎵硒 9
2-2-1 銅銦鎵硒材料簡介 9
2-2-2 非真空製程之銅銦鎵硒吸收層 12
2-3 晶粒生成與成長機制 13
2-3-1 Ostwald ripening 15
2-3-2 Oriented attachment與Mesocrystals 16
2-4 銅銦鎵硒(CIGS)粉體之製備 19
2-4-1 固態反應法 (Solid-state reaction) 19
2-4-2 熱分解法(Thermal decomposition method) 19
2-5 粉末燒結性 22
2-6 燒結機制 25
2-7 銅銦鎵硒(CIGS)之電特性 30
第三章 實驗步驟與分析方法 35
3-1 藥品 35
3-2 銅銦鎵硒奈米粉體之合成步驟 36
3-2-1 製備銅銦鎵之金屬錯合物 (Metal complexes) 36
3-2-2 以直接升溫法製備銅銦鎵硒奈米粉體 36
3-3 利用配體交換 (Ligands exchange) 去除粉體表面有機分子 37
3-4 銅銦鎵硒漿料製備及薄膜刮刀成形 38
3-5 銅銦鎵硒薄膜熱處理 40
3-5-1 氮氣氣氛高壓預燒結 (Pressurized-presinter) 40
3-5-2 硒化 (Selenization) 40
3-6 太陽能電池元件製作 40
3-7 實驗分析方法 40
3-7-1 粉末結晶相鑑定 40
3-7-2 熱重/熱差分析 (TG-DTA) 41
3-7-3 顯微結構分析 (SEM) 41
3-7-4 原子力顯微鏡 (AFM) 42
3-7-5 霍爾效應分析 (Hall effect) 42
3-7-6 能隙值量測 (UV-Vis-NIR) 42
3-7-7 光響應量測 (Photo-response) 42
3-7-8 微拉曼光譜儀 (Micro-Raman Spectrometer) 43
第四章 結果與討論 44
4-1 CIGS前驅物製備 44
4-1-1 直接升溫法合成之CuIn0.7Ga0.3Se2奈米粉體晶相鑑定 44
4-1-2 CIGS漿料於氣氛中之乾燥情形 45
4-1-3 刮刀塗佈法製備之CIGS前驅物表面形貌及EDS成分分析 48
4-2 CIGS薄膜顯微結構分析:於500℃燒結溫度下,硒化製程之硒化時間、硒蒸氣濃度、外界氮氣氣壓三者關係 52
4-2-1 改變硒化時間 52
4-2-2 改變硒化之硒蒸氣壓 54
4-2-3 改變硒化之外界氮氣壓 55
4-3 兩階段熱處理之CIGS薄膜顯微結構及EDS成分分析 57
4-4 CIGS 薄膜AFM分析 60
4-5 CIGS薄膜霍爾電性分析 62
4-5-1 硒化處理之CIGS薄膜霍爾電性 63
4-5-2 兩階段熱處理之CIGS薄膜霍爾電性 66
4-5-3 前驅物、預燒結及硒化各階段之CIGS薄膜霍爾效應分析 68
4-6 兩階段熱處理之CIGS薄膜晶相鑑定與能隙分析 70
4-7 兩階段熱處理之CIGS薄膜光響應分析 73
4-8 兩階段熱處理之CIGS元件特性 75
4-8-1 兩階段熱處理之CIGS元件表面形貌及其背電極成分分析 75
第五章 結論 81
參考文獻 83

參考文獻 [1] D. Pan et al., "Synthesis of Cu−In−S ternary nanocrystals with tunable structure and composition," Journal of the American Chemical Society, vol. 130, no. 17, pp. 5620-5621, 2008.
[2] S. Ahn, K. Kim, and K. Yoon, "Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 313, pp. 171-174, 2008.
[3] T. J. Garino and H. K. Bowen, "Kinetics of Constrained‐Film Sintering," Journal of the American Ceramic Society, vol. 73, no. 2, pp. 251-257, 1990.
[4] R. K. Bordia and G. W. Scherer, "On constrained sintering—I. Constitutive model for a sintering body," Acta metallurgica, vol. 36, no. 9, pp. 2393-2397, 1988.
[5] J. C. Chang, J. H. Jean, and Y. Y. Hung, "The Effect of Applied Stress on the Densification of a Low‐Temperature Cofired Ceramic‐Filled Glass System Under Constrained Sintering," Journal of the American Ceramic Society, vol. 92, no. 9, pp. 1946-1950, 2009.
[6] S. Ahn et al., "CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors," The Journal of Physical Chemistry C, vol. 114, no. 17, pp. 8108-8113, 2010.
[7] E. Lee, S. J. Park, J. W. Cho, J. Gwak, M.-K. Oh, and B. K. Min, "Nearly carbon-free printable CIGS thin films for solar cell applications," Solar Energy Materials and Solar Cells, vol. 95, no. 10, pp. 2928-2932, 2011.
[8] J. Barbé et al., "Inkjet printed Cu(In, Ga)S2 nanoparticles for low-cost solar cells," Journal of Nanoparticle Research, vol. 18, no. 12, p. 379, 2016.
[9] S. M. McLeod, C. J. Hages, N. J. Carter, and R. Agrawal, "Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks," Progress in Photovoltaics: Research and Applications, vol. 23, no. 11, pp. 1550-1556, 2015.
[10] C.-T. Yang and H.-I. Hsiang, "Different ligand exchange solvents effect on the densification of CuIn0. 7Ga0. 3Se2 prepared using the heating-up method," Applied Surface Science, vol. 426, pp. 1148-1157, 2017.
[11] Y. Hashimoto, T. Satoh, S. Shimakawa, and T. Negami, "High efficiency CIGS solar cell on flexible stainless steel," in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, vol. 1, pp. 574-577: IEEE.
[12] A. Ennaoui, S. Siebentritt, M. C. Lux-Steiner, W. Riedl, and F. Karg, "High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers," Solar Energy Materials and Solar Cells, vol. 67, no. 1, pp. 31-40, 2001.
[13] T. Nakada and M. Mizutani, "18% efficiency Cd-free Cu(In, Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers," Japanese Journal of Applied Physics, vol. 41, no. 2B, p. L165, 2002.
[14] S. Chen, X. Gong, and S.-H. Wei, "Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X= S and Se) and their alloys," Physical Review B, vol. 75, no. 20, p. 205209, 2007.
[15] Y. Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications. Springer Science & Business Media, 2013.
[16] R. W. Birkmire and E. Eser, "Polycrystalline thin film solar cells: present status and future potential," Annual Review of Materials Science, vol. 27, no. 1, pp. 625-653, 1997.
[17] S. Siebentritt, "Wide gap chalcopyrites: material properties and solar cells," Thin Solid Films, vol. 403, pp. 1-8, 2002.
[18] W. N. Shafarman, R. Klenk, and B. E. McCandless, "Device and material characterization of Cu(In, Ga)Se2 solar cells with increasing band gap," Journal of Applied Physics, vol. 79, no. 9, pp. 7324-7328, 1996.
[19] G.-C. Park et al., "Photovoltaic characteristics of CuInS2CdS solar cell by electron beam evaporation," Solar energy materials and solar cells, vol. 49, no. 1-4, pp. 365-374, 1997.
[20] T. Yukawa, K. Kuwabara, and K. Koumoto, "Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film," Thin Solid Films, vol. 286, no. 1-2, pp. 151-153, 1996.
[21] H. J. Möller, Semiconductors for solar cells. Artech House Publishers, 1993.
[22] D. Guimard et al., "Efficient Cu(In, Ga)Se2 Based Solar Cells Prepared by Electrodeposition," MRS Online Proceedings Library Archive, vol. 763, 2003.
[23] B. J. Brown and C. W. Bates Jr, "Similarities in the chemical mechanisms of CuInSe2 and CdS thin film formation by chemical spray pyrolysis," Thin Solid Films, vol. 188, no. 2, pp. 301-305, 1990.
[24] M. Kaelin, D. Rudmann, and A. Tiwari, "Low cost processing of CIGS thin film solar cells," Solar Energy, vol. 77, no. 6, pp. 749-756, 2004.
[25] V. K. Kapur, A. Bansal, P. Le, and O. I. Asensio, "Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks," Thin solid films, vol. 431, pp. 53-57, 2003.
[26] T. Wada et al., "Fabrication of Cu(In, Ga)Se2 thin films by a combination of mechanochemical and screen‐printing/sintering processes," physica status solidi (a), vol. 203, no. 11, pp. 2593-2597, 2006.
[27] C. Suryanarayana, E. Ivanov, R. Noufi, M. Contreras, and J. Moore, "Synthesis and processing of a Cu-In-Ga-Se sputtering target," Thin Solid Films, vol. 332, no. 1-2, pp. 340-344, 1998.
[28] T. Sugimoto, "Preparation of monodispersed colloidal particles," Advances in Colloid and Interface Science, vol. 28, pp. 65-108, 1987.
[29] V. K. LaMer and R. H. Dinegar, "Theory, production and mechanism of formation of monodispersed hydrosols," Journal of the American Chemical Society, vol. 72, no. 11, pp. 4847-4854, 1950.
[30] X. Peng, J. Wickham, and A. Alivisatos, "Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing” of size distributions," Journal of the American Chemical Society, vol. 120, no. 21, pp. 5343-5344, 1998.
[31] Z. A. Peng and X. Peng, "Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth," Journal of the American Chemical Society, vol. 124, no. 13, pp. 3343-3353, 2002.
[32] J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, "Synthesis of monodisperse spherical nanocrystals," Angewandte Chemie International Edition, vol. 46, no. 25, pp. 4630-4660, 2007.
[33] 游佩青, "類均質條件下奈米 θ-Al2O3 微粒之晶粒成長現象觀察," 成功大學資源工程學系學位論文, pp. 1-121, 2008.
[34] P. W. Voorhees, "The theory of Ostwald ripening," Journal of Statistical Physics, vol. 38, no. 1-2, pp. 231-252, 1985.
[35] I. M. Lifshitz and V. V. Slyozov, "The kinetics of precipitation from supersaturated solid solutions," Journal of physics and chemistry of solids, vol. 19, no. 1-2, pp. 35-50, 1961.
[36] R. L. Penn and J. F. Banfield, "Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2," American Mineralogist, vol. 83, no. 9-10, pp. 1077-1082, 1998.
[37] R. L. Penn and J. F. Banfield, "Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania," Geochimica et cosmochimica acta, vol. 63, no. 10, pp. 1549-1557, 1999.
[38] Y. w. Jun, J. s. Choi, and J. Cheon, "Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes," Angewandte Chemie International Edition, vol. 45, no. 21, pp. 3414-3439, 2006.
[39] H. Cölfen and S. Mann, "Higher‐order organization by mesoscale self‐assembly and transformation of hybrid nanostructures," Angewandte Chemie International Edition, vol. 42, no. 21, pp. 2350-2365, 2003.
[40] T. Vossmeyer, G. Reck, L. Katsikas, E. Haupt, B. Schulz, and H. Weller, "A" double-diamond superlattice" built up of Cd17S4 (SCH2CH2OH)26 clusters," Science, vol. 267, no. 5203, pp. 1476-1479, 1995.
[41] W. P. Hsu, L. Ronnquist, and E. Matijevic, "Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium (IV)," Langmuir, vol. 4, no. 1, pp. 31-37, 1988.
[42] S. Wohlrab, N. Pinna, M. Antonietti, and H. Cölfen, "Polymer‐induced alignment of dl‐alanine nanocrystals to crystalline mesostructures," Chemistry-A European Journal, vol. 11, no. 10, pp. 2903-2913, 2005.
[43] H. Cölfen and M. Antonietti, "Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment," Angewandte Chemie International Edition, vol. 44, no. 35, pp. 5576-5591, 2005.
[44] N. Yamamoto, S. Ishida, and H. Horinaka, "Solid State Growth of CuInSe2 and CuInTe2," Japanese Journal of Applied Physics, vol. 28, no. 10R, p. 1780, 1989.
[45] T. Wada and H. Kinoshita, "Rapid exothermic synthesis of chalcopyrite-type CuInSe2," Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 1987-1989, 2005.
[46] S. Ahn, C. Kim, J. Yun, J. Lee, and K. Yoon, "Effects of heat treatments on the properties of Cu(In, Ga)Se2 nanoparticles," Solar energy materials and solar cells, vol. 91, no. 19, pp. 1836-1841, 2007.
[47] Y. A. Yang, H. Wu, K. R. Williams, and Y. C. Cao, "Synthesis of CdSe and CdTe nanocrystals without precursor injection," Angewandte Chemie, vol. 117, no. 41, pp. 6870-6873, 2005.
[48] Y.-H. A. Wang, C. Pan, N. Bao, and A. Gupta, "Synthesis of ternary and quaternary CuInxGa1− xSe2 (0≤ x≤ 1) semiconductor nanocrystals," Solid State Sciences, vol. 11, no. 11, pp. 1961-1964, 2009.
[49] Q. Guo et al., "Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells," Nano letters, vol. 8, no. 9, pp. 2982-2987, 2008.
[50] C. B. Murray, a. C. Kagan, and M. Bawendi, "Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies," Annual Review of Materials Science, vol. 30, no. 1, pp. 545-610, 2000.
[51] Y.-H. Yang and Y.-T. Chen, "Solvothermal preparation and spectroscopic characterization of copper indium diselenide nanorods," The Journal of Physical Chemistry B, vol. 110, no. 35, pp. 17370-17374, 2006.
[52] M. N. Rahaman, Ceramic processing and sintering. CRC press, 2003.
[53] 劉陽橋, 奈米粉體的分散及表面改性. 五南圖書出版股份有限公司, 2005.
[54] W. H. Rhodes, "Agglomerate and particle size effects on sintering Yttria‐stabilized Zirconia," Journal of the American Ceramic Society, vol. 64, no. 1, pp. 19-22, 1981.
[55] J. D. Park, "Growth and Electrical Characterization of CuInSe2 Prepared by the Sintering Method," Journal of the Korean Physical Society, vol. 25, no. 6, pp. 536-540, 1992.
[56] S. Ahn, K. Kim, and K. Yoon, "Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 313, pp. 171-174, 2008.
[57] I. Repins, S. Glynn, J. Duenow, T. J. Coutts, W. K. Metzger, and M. A. Contreras, "Required material properties for high-efficiency CIGS modules," in Thin Film Solar Technology, 2009, vol. 7409, p. 74090M: International Society for Optics and Photonics.
[58] G. Cao, Nanostructures & nanomaterials: synthesis, properties & applications. Imperial college press, 2004.
[59] T. Meyer, F. Engelhardt, J. Parisi, and U. Rau, "Spectral dependence and hall effect of persistent photoconductivity in polycrystalline Cu(In, Ga)Se2 thin films," Journal of applied physics, vol. 91, no. 8, pp. 5093-5099, 2002.
[60] H. Wang et al., "Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process," Semiconductor Science and Technology, vol. 25, no. 5, p. 055007, 2010.
[61] R. Potter, "Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells," Solar cells, vol. 16, pp. 521-527, 1986.
[62] J. Lee, J. D. Cohen, and W. N. Shafarman, "The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements," Thin Solid Films, vol. 480, pp. 336-340, 2005.
[63] C.-M. ZHENG, Y.-T. WEI, K. XIE, and Y. HAN, "Preparation of polycrystal-line Cu(ln, Ga)Se2 thin film with nano-metal oxide: the chemical reaction process and its properties," Journal of Inorganic Materials, vol. 28, no. 7, pp. 701-706, 2013.
[64] I. J. Choi, J. W. Jang, B. C. Mohanty, S. M. Lee, and Y. S. Cho, "Improved Photovoltaic Characteristics and Grain Boundary Potentials of CuIn0. 7Ga0. 3Se2 Thin Films Spin-Coated by Na-Dissolved Nontoxic Precursor Solution," ACS applied materials & interfaces, vol. 8, no. 27, pp. 17011-17015, 2016.
[65] H.-P. Kuo, H.-A. Tsai, A.-N. Huang, and W.-C. Pan, "CIGS absorber preparation by non-vacuum particle-based screen printing and RTA densification," Applied energy, vol. 164, pp. 1003-1011, 2016.
[66] A. Kotbi, B. Hartiti, S. Fadili, A. Ridah, and P. Thevenin, "Copper indium gallium disulphide (CuInGaS2) thin films deposited by spray pyrolysis for solar cells: influence of deposition time in controlling properties of sprayed CuInGaS2 absorbers," Optical and Quantum Electronics, vol. 48, no. 11, p. 524, 2016.
[67] X. Wang et al., "Investigation of rapid thermal annealing on Cu(In, Ga)Se2 films and solar cells," Solar Energy Materials and Solar Cells, vol. 90, no. 17, pp. 2855-2866, 2006.
[68] L. Zhang, Q. He, W.-L. Jiang, F.-F. Liu, C.-J. Li, and Y. Sun, "Effects of substrate temperature on the structural and electrical properties of Cu(In, Ga)Se2 thin films," Solar Energy Materials and Solar Cells, vol. 93, no. 1, pp. 114-118, 2009.
[69] L. Zhang, F.-f. Liu, F.-y. Li, Q. He, B.-z. Li, and C.-j. Li, "Structural, optical and electrical properties of low-temperature deposition Cu(InxGa1−x)Se2 thin films," Solar Energy Materials and Solar Cells, vol. 99, pp. 356-361, 2012.
[70] M. G. Tsai et al., "Annealing effect on the properties of Cu(In0. 7Ga0. 3)Se2 thin films grown by femtosecond pulsed laser deposition," Journal of the American Ceramic Society, vol. 96, no. 8, pp. 2419-2423, 2013.
[71] C. Frisk et al., "Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models," Journal of Physics D: Applied Physics, vol. 47, no. 48, p. 485104, 2014.
[72] Q. Guo, G. M. Ford, R. Agrawal, and H. W. Hillhouse, "Ink formulation and low‐temperature incorporation of sodium to yield 12% efficient Cu(In, Ga)(S, Se)2 solar cells from sulfide nanocrystal inks," Progress in Photovoltaics: Research and Applications, vol. 21, no. 1, pp. 64-71, 2013.
[73] A. Ferrari and J. Robertson, "Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon," Physical Review B, vol. 64, no. 7, p. 075414, 2001.
[74] T. B. Harvey et al., "Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films," ACS applied materials & interfaces, vol. 5, no. 18, pp. 9134-9140, 2013.
[75] 董怡伶, "NiCuZn Ferrite 異質陶瓷系統的共燒研究," 清華大學材料科學工程學系學位論文, pp. 1-178, 2013.
[76] R. Noufi, R. Axton, C. Herrington, and S. Deb, "Electronic properties versus composition of thin films of CuInSe2," Applied Physics Letters, vol. 45, no. 6, pp. 668-670, 1984.
[77] I. Sanyal, K. Chattopadhyay, S. Chaudhuri, and A. Pal, "Grain boundary scattering in CuInSe2 films," Journal of applied physics, vol. 70, no. 2, pp. 841-845, 1991.
[78] S. Rondiya et al., "Effect of calcination temperature on the properties of CZTS absorber layer prepared by RF sputtering for solar cell applications," Materials for Renewable and Sustainable Energy, vol. 6, no. 2, p. 8, 2017.
[79] S. Jung, S. Ahn, J. H. Yun, J. Gwak, D. Kim, and K. Yoon, "Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique," Current Applied Physics, vol. 10, no. 4, pp. 990-996, 2010.
[80] S. H. Wei and A. Zunger, "Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys," Journal of Applied Physics, vol. 78, no. 6, pp. 3846-3856, 1995.
[81] J.-Y. Qu, Z.-F. Guo, K. Pan, W.-W. Zhang, and X.-J. Wang, "Cu(In, Ga)Se2 absorbers prepared by electrodeposition for low-cost thin-film solar cells," Rare Metals, vol. 36, no. 9, pp. 729-736, 2017.
[82] F. Jiang and H. Shen, "Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor," RSC Advances, vol. 3, no. 45, pp. 23474-23481, 2013.
[83] H.-C. Huang, C.-S. Lin, and W.-C. Chang, "Electrodeposition of CIS films on the Mo back electrodes with different crystallinities," Electrochimica Acta, vol. 75, pp. 20-27, 2012.
[84] D. Abou-Ras et al., "Formation and characterisation of MoSe2 for Cu(In, Ga)Se2 based solar cells," Thin Solid Films, vol. 480, pp. 433-438, 2005.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw